
Java in Adaptive Server® Enterprise

Adaptive Server® Enterprise
15.0

DOCUMENT ID: DC31652-01-1500-01

LAST REVISED: July, 2005

Copyright © 1987-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect,
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server,
Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase
Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup,
Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System 11, System XI (logo),
SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib,
Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center,
Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL,
WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of Sybase, Inc.
02/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Java in Adaptive Server Enterprise iii

About This Book ... ix

CHAPTER 1 An Introduction to Java in the Database 1
Advantages of Java in the database .. 1
Capabilities of Java in the database .. 2

Invoking Java methods in the database 2
Storing Java classes as datatypes .. 3
Storing and querying XML in the database 4

Standards... 4
Java in the database: questions and answers 4

What are the key features? ... 5
How can I store Java instructions in the database? 5
How is Java executed in the database?.................................... 6
How can I use Java and SQL together?.................................... 6
What is the Java API? ... 7
How can I access the Java API from SQL? 7
Which Java classes are supported in the Java API? 8
Can I install my own Java classes?... 8
Can I access data using Java? ... 8
Can I use the same classes on client and server?.................... 8
How do I use Java classes in SQL?.. 9
Where can I find information about Java in the database? 9
What you cannot do with Java in the database......................... 9

Sample Java classes ... 10

CHAPTER 2 Preparing for and Maintaining Java in the Database................. 11
The Java runtime environment... 11

Java classes in the database .. 11
JDBC drivers ... 12
The Java VM ... 12

Configuring memory for Java in the database................................ 13
Enabling the server for Java .. 13

Disabling the server for Java... 13

Contents

iv Adaptive Server Enterprise

Creating Java classes and JARs ... 14
Writing the Java code.. 14
Compiling Java code ... 14
Saving classes in a JAR file .. 15

Installing Java classes in the database.. 15
Using installjava .. 16
Referencing other Java-SQL classes...................................... 18

Viewing information about installed classes and JARs 18
Downloading installed classes and JARs....................................... 19
Removing classes and JARs ... 19

Retaining classes .. 20

CHAPTER 3 Using Java Classes in SQL... 21
General concepts ... 22

Java considerations... 22
Java-SQL names... 23

Using Java classes as datatypes ... 23
Creating and altering tables with Java-SQL columns.............. 24
Selecting, inserting, updating, and deleting Java objects........ 26

Invoking Java methods in SQL .. 28
Sample methods ... 29
Exceptions in Java-SQL methods ... 29

Representing Java instances ... 30
Assignment properties of Java-SQL data items............................. 31
Datatype mapping between Java and SQL fields 33
Character sets for data and identifiers ... 34
Subtypes in Java-SQL data ... 34

Widening conversions ... 35
Narrowing conversions.. 35
Runtime versus compile-time datatypes 36

The treatment of nulls in Java-SQL data.. 36
References to fields and methods of null instances 37
Null values as arguments to Java-SQL methods 38
Null values when using the SQL convert function 39

Java-SQL string data ... 40
Zero-length strings .. 40

Type and void methods.. 41
Java void instance methods .. 42
Java void static methods ... 43

Equality and ordering operations ... 44
Evaluation order and Java method calls .. 45

Columns .. 45
Variables and parameters ... 46

Static variables in Java-SQL classes ... 46

Contents

Java in Adaptive Server Enterprise v

Java classes in multiple databases.. 47
Scope .. 48
Cross-database references ... 48
Inter-class transfers... 49
Passing inter-class arguments .. 50
Temporary and work databases.. 50

 Java classes.. 51

CHAPTER 4 Data Access Using JDBC... 57
Overview .. 57
JDBC concepts and terminology.. 58
Differences between client- and server-side JDBC........................ 58
Permissions.. 59
Using JDBC to access data ... 59

Overview of the JDBCExamples class 60
The main() and serverMain() methods 61
Obtaining a JDBC connection: the Connecter() method 62
Routing the action to other methods: the doAction() method . 63
Executing imperative SQL operations: the doSQL() method . 63
Executing an update statement: the updater() method 63
Executing a select statement: the selecter() method 64
Calling a SQL stored procedure: the caller() method 65

Error handling in the native JDBC driver .. 66
The JDBCExamples class.. 68

The main() method ... 69
The serverMain() method ... 69
The connecter() method ... 70
The doAction() method... 70
The doSQL() method.. 72
The updater() method... 72
The selecter() method .. 72
The caller() method .. 73

CHAPTER 5 SQLJ Functions and Stored Procedures.................................... 75
Overview .. 75

Compliance with SQLJ Part 1 specifications........................... 76
General issues .. 76
Security and permissions .. 77
SQLJ Examples... 77

Invoking Java methods in Adaptive Server 78
Using Sybase Central to manage SQLJ functions and procedures 80
SQLJ user-defined functions.. 81

Handling null argument values .. 84

Contents

vi Adaptive Server Enterprise

Deleting a SQLJ function name... 86
SQLJ stored procedures .. 86

Modifying SQL data... 88
Using input and output parameters ... 90
Returning result sets ... 93

Viewing information about SQLJ functions and procedures 97
Advanced topics... 97

Mapping Java and SQL datatypes .. 97
Using the command main method... 101

SQLJ and Sybase implementation: a comparison 102
SQLJExamples class ... 105

CHAPTER 6 Debugging Java in the Database ... 109
Introduction to debugging Java .. 109

How the debugger works... 109
Requirements for using the Java debugger 109
What you can do with the debugger...................................... 110

Using the debugger.. 110
Starting the debugger and connecting to the database......... 110
Compiling classes for debugging .. 111
Attaching to a Java VM ... 111
The Source window... 112
Options .. 113
Setting breakpoints.. 114
Disconnecting from the database.. 116

A debugging tutorial ... 117
Before you begin ... 117
Start the Java debugger and connect to the database.......... 117
Attach to a Java VM .. 118
Load source code into the debugger..................................... 118
Step through source code ... 119
Inspecting and modifying variables 120

CHAPTER 7 Network Access Using java.net.. 123
Overview .. 123
java.net classes.. 124
Setting up java.net ... 124
Example usage .. 125

Using socket classes... 125
Using the URL class.. 128

User notes.. 130

Contents

Java in Adaptive Server Enterprise vii

CHAPTER 8 Reference Topics .. 131
JDK requirement for Java classes in the server........................... 131
Assignments... 132

Assignment rules at compile-time ... 132
Assignment rules at runtime.. 132

Allowed conversions .. 133
Transferring Java-SQL objects to clients 134
Supported Java API packages, classes, and methods 134

Supported Java packages and classes................................. 135
Unsupported Java packages, classes, and methods 135
Unsupported java.sql methods and interfaces 136

Invoking SQL from Java... 137
Special considerations .. 138

Transact-SQL commands from Java methods............................. 138
Datatype mapping between Java and SQL.................................. 142
Java-SQL identifiers ... 144
Java-SQL class and package names... 145
Java-SQL column declarations .. 146
Java-SQL variable declarations ... 147
Java-SQL column references... 147
Java-SQL member references ... 148
Java-SQL method calls .. 149

Glossary ... 153

Index ... 157

viii Adaptive Server Enterprise

Java in Adaptive Server Enterprise ix

About This Book

Audience This book is for Sybase System Administrators, Database Owners, and
users who are familiar with the Java programming language and Transact-
SQL®, the Sybase version of Structured Query Language (SQL).
Familiarity with Java Database Connectivity (JDBC) is assumed for those
who use these features.

How to use this book This book will assist you in installing, configuring, and using Java classes
and methods in the Adaptive Server database. It includes these chapters:

• Chapter 1, “An Introduction to Java in the Database,” provides an
overview of Java in Adaptive Server, including a “questions and
answers” section for both novice and experienced Java users.

• Chapter 2, “Preparing for and Maintaining Java in the Database,”
describes the Java runtime environment and the steps for enabling
Java on the server and installing Java classes.

• Chapter 3, “Using Java Classes in SQL,” describes how to use Java-
SQL classes in your Adaptive Server database.

• Chapter 4, “Data Access Using JDBC,” describes how you use a
JDBC driver (on the server or on the client) to perform SQL
operations in Java.

• Chapter 5, “SQLJ Functions and Stored Procedures,” describes how
you can enclose and use Java methods in SQL wrappers.

• Chapter 6, “Debugging Java in the Database,” describes how you use
the Sybase debugger with Java.

• Chapter 7, “Network Access Using java.net,” describes how you can
use java.net, a package that allows you to create networking
applications over TCP/IP. It enables classes running in Adaptive
Server to access different kinds of servers.

• Chapter 8, “Reference Topics,” provides information about datatype
mapping, Java-SQL syntax, and other useful information.

x Adaptive Server Enterprise

In addition, a glossary provides descriptions of the Java and Java-SQL terms
used in this book.

Note Information about XML in the SQL database, included in this book
through version 12.5 of Adaptive Server, is now included in XML Services in
Adaptive Server Enterprise.

Related documents The Sybase® Adaptive Server® Enterprise documentation set consists of the
following:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 15.0, the system changes added to support
those features, and changes that may affect your existing applications.

• ASE Replicator User’s Guide – describes how to use the Adaptive Server
Replicator feature of Adaptive Server to implement basic replication from
a primary server to one or more remote Adaptive Servers.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• The Configuration Guide for your platform – provides instructions for
performing specific configuration tasks for Adaptive Server.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Historical Server User’s Guide – describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

 About This Book

Java in Adaptive Server Enterprise xi

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

• Job Scheduler User's Guide – provides instructions on how to install and
configure, and create and schedule jobs on a local or remote Adaptive
Server using the command line or a graphical user interface (GUI).

• Messaging Service User’s Guide – describes how to useReal Time
Messaging Services to integrate TIBCO Java Message Service and IBM
WebSphere MQ messaging services with all Adaptive Server database
applications.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Performance and Tuning Guide – is a series of four books that explains
how to tune Adaptive Server for maximum performance:

• Basics – the basics for understanding and investigating performance
questions in Adaptive Server.

• Locking – describes how the various locking schemas can be used for
improving performance in Adaptive Server.

• Optimizer and Abstract Plans – describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

• Monitoring and Analyzing – explains how statistics are obtained and
used for monitoring and optimizing performance.

• Quick Reference Guide – provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book.

• Reference Manual – is a series of four books that contains the following
detailed Transact-SQL® information:

• Building Blocks – Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

• Commands – Transact-SQL commands.

xii Adaptive Server Enterprise

• Procedures – Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

• Tables – Transact-SQL system tables and dbcc tables.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Unified Agent and Agent Management Console – Describes the Unified
Agent, which provides runtime services to manage, monitor and control
distributed Sybase resources.

• Unified Agent and Agent Management Console – Describes the Unified
Agent, which provides runtime services to manage, monitor and control
distributed Sybase resources.

• Utility Guide – documents the Adaptive Server utility programs, such as
isql and bcp, which are executed at the operating system level.

• Web Services User’s Guide – explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

 About This Book

Java in Adaptive Server Enterprise xiii

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

xiv Adaptive Server Enterprise

5 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBFs/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBFs/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBFs/Maintenance report, or click the
product description to download the software.

 About This Book

Java in Adaptive Server Enterprise xv

Conventions This section describes conventions used for Java and Transact_SQL in this
book.

This book uses these font and syntax conventions for Java items:

• Classes, interfaces, methods, and packages are shown in Helvetica within
paragraph text. For example:

SybEventHandler interface

setBinaryStream() method

com.Sybase.jdbx package

• Objects, instances, and parameter names are shown in italics. For
example:

“In the following example, ctx is a DirContext object.”

 “eventHdler is an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want to
debug.”

• Java names are always case sensitive. For example, if a Java method name
is shown as Misc.stripLeadingBlanks(), you must type the method name
exactly as displayed.

Transact-SQL is a free-form language. There are no rules about the number of
words you can put on a line or where you must break a line. However, for
readability, all examples and most syntax statements in this manual are
formatted so that each clause of a statement begins on a new line. Clauses that
have more than one part extend to additional lines, which are indented.
Complex commands are formatted using modified Backus Naur Form (BNF)
notation.

Table 1 shows the conventions for syntax statements that appear in this manual:

Table 1: Font and syntax conventions for this manual

Element Example

Command names,procedure names, utility names, and
other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font. master database

Book names, file names, variables, and path names are
in italics.

System Administration Guide

sql.ini file

column_name

$SYBASE/ASE directory

xvi Adaptive Server Enterprise

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]

For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase. Italic font shows user-supplied words.

• Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

• Examples of output from the computer appear as follows:

Variables—or words that stand for values that you fill
in—when they are part of a query or statement, are in
italics in Courier font.

select column_name
from table_name
where search_conditions

Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbol.
Indicates “is defined as”.

::=

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed options is optional. Do not type the brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipe or vertical bar(|) means you may select only
one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the last unit
as many times as you like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may
choose a method of payment: one of the items enclosed in
square brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, give its name, its price, and (optionally) a method of
payment.

Element Example

 About This Book

Java in Adaptive Server Enterprise xvii

pub_id pub_name city state
------- --------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

This version of the Enhanced Specialty Data Store and the HTML
documentation have been tested for compliance with U.S. government Section
508 Accessibility requirements. Documents that comply with Section 508
generally also meet non-U.S. accessibility guidelines, such as the World Wide
Web Consortium (W3C) guidelines for Web sites.

The online help for this product is also provided in HTML, which you can
navigate using a screen reader.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xviii Adaptive Server Enterprise

Java in Adaptive Server Enterprise 1

C H A P T E R 1 An Introduction to Java in the
Database

This chapter provides an overview of Java classes in Adaptive Server
Enterprise.

Advantages of Java in the database
Adaptive Server provides a runtime environment for Java, which means
that Java code can be executed in the server. Building a runtime
environment for Java in the database server provides powerful new ways
of managing and storing both data and logic.

• You can use the Java programming language as an integral part of
Transact-SQL.

• You can reuse Java code in the different layers of your application—
client, middle-tier, or server—and use them wherever makes most
sense to you.

• Java in Adaptive Server provides a more powerful language than
stored procedures for building logic into the database.

• Java classes become rich, user-defined data types.

• Methods of Java classes provide new functions accessible from SQL.

Topic Page
Advantages of Java in the database 1

Capabilities of Java in the database 2

Standards 4

Java in the database: questions and answers 4

Sample Java classes 10

Capabilities of Java in the database

2 Adaptive Server Enterprise

• Java can be used in the database without jeopardizing the integrity,
security, and robustness of the database. Using Java does not alter the
behavior of existing SQL statements or other aspects of non-Java
relational database behavior.

Capabilities of Java in the database
Java in Adaptive Server allows you to:

• Invoke Java methods in the database

• Store Java classes as datatypes

• Store and query XML in the database

Invoking Java methods in the database
You can install Java classes in Adaptive Server, and then invoke the static
methods of those classes in two ways:

• You can invoke the Java methods directly in SQL.

• You can wrap the methods in SQL names and invoke them as you would
standard Transact-SQL stored procedures.

Invoking Java methods directly in SQL

The methods of an object-oriented language correspond to the functions of a
procedural language. You can invoke methods stored in the database by
referencing them, with name qualification, on instances for instance methods,
and on either instances or classes for static (class) methods. You can invoke the
method directly in, for example, Transact-SQL select lists and where clauses.

You can use static methods that return a value to the caller as user-defined
functions (UDFs).

Certain restrictions apply when using Java methods in this way:

• If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

CHAPTER 1 An Introduction to Java in the Database

Java in Adaptive Server Enterprise 3

• Output parameters are not supported. A method can manipulate the data it
receives from a JDBC connection, but the only value it can return to its
caller is a single return value declared as part of its definition.

Invoking Java methods as SQLJ stored procedures and functions

You can enclose Java static methods in SQL wrappers and use them exactly as
you would Transact-SQL stored procedures or built-in functions. This
functionality:

• Allows Java methods to return output parameters and result sets to the
calling environment.

• Allows you to take advantage of traditional SQL syntax, metadata, and
permission capabilities.

• Allows you to invoke SQLJ functions across databases.

• Allows you to use existing Java methods as SQLJ procedures and
functions on the server, on the client, and on any SQLJ-compliant, third-
party database.

• Complies with Part 1 of the standard specification. See “Standards” on
page 4.

Storing Java classes as datatypes
With Java in the database, you can install pure Java classes in a SQL system,
and then use those classes in a natural manner as datatypes in a SQL database.
This capability adds a full object-oriented datatype extension mechanism to
SQL, using a model that is widely understood and a language that is portable
and widely available. The objects that you create and store with this facility are
readily transferable to any Java-enabled environment, either in another SQL
system or standalone Java environment.

This capability of using Java classes in the database has two different but
complementary uses:

• It provides a type extension mechanism for SQL, which you can use for
data that is created and processed in SQL.

Standards

4 Adaptive Server Enterprise

• It provides a persistent data capability for Java, which you can use to store
data in SQL that is created and processed (mainly) in Java. Java in
Adaptive Server provides a distinct advantage over traditional SQL
facilities: you do not need to map the Java objects into scalar SQL
datatypes or store the Java objects as untyped binary strings.

Storing and querying XML in the database
Similar to Hypertext Markup Language (HTML), the eXtensible Markup
Language (XML) allows you to define your own application-specific markup
tags and is thus particularly suited for data interchange.

XML Services in Adaptive Server Enterprise describes the Sybase native XML
processor and the Sybase Java-based XML support, introduces XML in the
database, and documents the query and mapping functions that comprise XML
Services.

Standards
The ANSI SQL standards specify SQL extensions for using Java facilities in
SQL. The Java-SQL specifications are in the SQL standard, “Part 13: SQL
Routines and Types Using the Java™ Programming Language (SQL/JRT).”
This standard is referred to informally as “SQLJ.”

Sybase supports the SQLJ specifications for Java routines, and provides
equivalent facilities for Java types. In addition, Sybase extends the standard.
For example, Adaptive Server allows you to reference Java methods and
classes directly in SQL.

Java in the database: questions and answers
Although this book assumes that readers are familiar with Java, there is much
to learn about Java in a database. Sybase is not only extending the capabilities
of the database with Java, but also extending the capabilities of Java with the
database.

CHAPTER 1 An Introduction to Java in the Database

Java in Adaptive Server Enterprise 5

Both experienced and novice Java users should read this section. It uses a
question-and-answer format to familiarize you with the basics of Java in
Adaptive Server.

What are the key features?
All of these points are explained in detail in later sections. With Java in
Adaptive Server, you can:

• Run Java in the database server using an internal Java Virtual Machine
(Java VM).

• Call Java functions (methods) directly from SQL statements.

• Wrap Java methods in SQL aliases and call them as standard SQL stored
procedures and built-in functions.

• Access SQL data from Java using an internal JDBC driver.

• Use Java classes as SQL datatypes.

• Save instances of Java classes in tables.

• Generate XML-formatted documents from raw data stored in Adaptive
Server databases and, conversely, store XML documents and data
extracted from them in Adaptive Server databases.

• Debug Java in the database.

How can I store Java instructions in the database?
Java is an object-oriented language. Its instructions (source code) come in the
form of classes. You write and compile the Java instructions outside the
database into compiled classes (byte code), which are binary files holding Java
instructions.

You then install the compiled classes into the database, where they can be
executed in the database server.

Adaptive Server is a runtime environment for Java classes. You need a Java
development environment, such as Sybase PowerJ™ or Sun Microsystems
Java Development Kit (JDK), to write and compile Java.

Java in the database: questions and answers

6 Adaptive Server Enterprise

How is Java executed in the database?
To support Java in the database, Adaptive Server:

• Comes with its own Java VM, specifically developed for handling Java
processing in the server.

• Uses its own JDBC driver that runs in the server and accesses a database.

The Sybase Java VM runs in the database environment. It interprets compiled
Java instructions and runs them in the database server.

The Sybase Java VM meets the JCM specifications from Java Software; it is
designed to work with the 2.0 version of the Java API. It supports public class
and instance methods; classes inheriting from other classes; the Java API; and
access to protected, public, and private fields. Some Java API functions that are
not appropriate in a server environment, such as user interface elements, are
not supported. All supported Java API packages and classes come with
Adaptive Server.

The Adaptive Server Java VM is available at all times to perform a Java
operation whenever it is required as part of the execution of a SQL statement.
The database server starts the Java VM automatically when it is needed; you
do not need to take any explicit action to start or stop the Java VM.

Client- and server-side JDBC

JDBC is the industry standard API for executing SQL in Java.

Adaptive Server provides a native JDBC driver. This driver is designed to
maximize performance as it executes on the server because it does not need to
communicate across the network. This driver permits Java classes installed in
a database to use JDBC classes that execute SQL statements.

When JDBC classes are used within a client application, you typically must use
jConnect™ for JDBC™, the Sybase client-side JDBC database driver, to
provide the classes necessary to establish a database connection.

How can I use Java and SQL together?
A guiding principle for the design of Java in the database is that it provides a
natural, open extension to existing SQL functionality.

CHAPTER 1 An Introduction to Java in the Database

Java in Adaptive Server Enterprise 7

• Java operations are invoked from SQL – Sybase has extended the range of
SQL expressions to include fields and methods of Java objects, so that you
can include Java operations in a SQL statement.

• Java methods as SQLJ stored procedures and functions – you create a
SQLJ alias for Java static methods, so that you can invoke them as
standard SQL stored procedures and user-defined functions (UDFs).

• Java classes become user-defined datatypes – you store Java class
instances using the same SQL statements as those used for traditional SQL
datatypes.

You can use classes that are part of the Java API, and classes created and
compiled by Java developers.

What is the Java API?
The Java Application Programming Interface (API) is a set of classes defined
by Sun Microsystems. It provides a range of base functionality that can be used
and extended by Java developers. It is the core of “what you can do” with Java.

The Java API offers considerable functionality in its own right. A large portion
of the Java API is built in to any database that is enabled to use Java code—
which includes the majority of nonvisual classes from the Java API already
familiar to developers using the Sun Microsystems JDK.

How can I access the Java API from SQL?
You can use the Java API in stored procedures, in UDFs, and in SQL
statements as extensions to the available built-in functions provided by SQL.

For example, the SQL function PI(*) returns the value for Pi. The Java API
class java.lang.Math has a parallel field named PI that returns the same value.
But java.lang.Math also has a field named E that returns the base of the natural
logarithm, as well as a method that computes the remainder operation on two
arguments as prescribed by the IEE754 standard.

Java in the database: questions and answers

8 Adaptive Server Enterprise

Which Java classes are supported in the Java API?
Not all Java API classes are supported in the database. Some classes, for
example, the java.awt package that contains user interface components for
applications, are not appropriate inside a database server. Other classes,
including part of java.io, deal with writing information to a disk, and are also
not supported in the database server environment. See Chapter 8, “Reference
Topics,” for a list of supported and unsupported classes.

Can I install my own Java classes?
You can install your own Java classes into the database as, for example, a user-
created Employee class or Inventory class that a developer designed, wrote,
and compiled with a Java compiler.

User-defined Java classes can contain both information and methods. Once
installed in a database, Adaptive Server lets you use these classes in all parts
and operations of the database and execute their functionality (in the form of
class or instance methods).

Can I access data using Java?
The JDBC interface is an industry standard designed to access database
systems. The JDBC classes are designed to connect to a database, request data
using SQL statements, and return results that can be processed in the client
application.

You can connect from a client application to Adaptive Server Enterprise via
JDBC, using jConnect or a JDBC/ODBC bridge. Adaptive Server also
provides an internal JDBC driver, which permits Java classes installed in a
database to use JDBC classes that execute SQL statements.

Can I use the same classes on client and server?
You can create Java classes that can be used on different levels of an enterprise
application. You can integrate the same Java class into either the client
application, a middle tier, or the database.

CHAPTER 1 An Introduction to Java in the Database

Java in Adaptive Server Enterprise 9

How do I use Java classes in SQL?
Using Java classes, whether user-defined or from the Java API, is a three-step
activity:

1 Write or acquire a set of Java classes that you want to use as SQL
datatypes, or as SQL aliases for static methods.

2 Install those classes in the Adaptive Server database.

3 Use those classes in SQL code:

• Call class (static) methods of those classes as UDFs.

• Declare the Java classes as datatypes of SQL columns, variables, and
parameters. In this book, they are called Java-SQL columns,
variables, and parameters.

• Reference the Java-SQL columns, their fields, and their methods.

• Wrap static methods in SQL aliases and use them as stored procedures
or functions.

Where can I find information about Java in the database?
There are many books about Java and Java in the database. Two particularly
useful books are:

• James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java™
Language Specification, Second Edition, Addison-Wesley, 2000.

• Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark
Hapner, JDBC™ API Tutorial and Reference, Second Edition, Addison-
Wesley, 1999.

What you cannot do with Java in the database
Adaptive Server is a runtime environment for Java classes, not a Java
development environment.

You cannot perform these actions in the database:

• Edit class source files (*.java files).

• Compile Java class source files (*.java files).

Sample Java classes

10 Adaptive Server Enterprise

• Execute Java APIs that are not supported, such as applet and visual
classes.

• Use Java threading. Adaptive Server does not support java.lang.Thread and
java.lang.ThreadGroup. If you attempt to spawn a thread, Adaptive Server
throws java.lang.UnsupportedOperationException.

• Use the Java Native Interface (JNI).

• Use Java objects as parameters sent to a remote procedure call or received
from a remote procedure call. They do not translate correctly.

• Sybase recommends that you do not use static variables in methods
referenced by Java-SQL functions, SQLJ functions, or SQLJ stored
procedures. The values returned for these variables may be unreliable as
the scope of the static variable is implementation-dependent.

Sample Java classes
The chapters of this book use simple Java classes to illustrate basic principles
for using Java in the database. You can find copies of these classes in the
chapters that describe them and in the Sybase release directory in
$SYBASE/$SYBASE_ASE/sample/JavaXml/JavaXml.zip (UNIX) or
%SYBASE%\Ase-15_0\sample\JavaXml/JavaXml.zip (Windows NT).

Java in Adaptive Server Enterprise 11

C H A P T E R 2 Preparing for and Maintaining
Java in the Database

This chapter describes the Java runtime environment, how to enable Java
on the server, and how to install and maintain Java classes in the database.

The Java runtime environment
The Adaptive Server runtime environment for Java requires a Java VM,
which is available as part of the database server, and the Sybase runtime
Java classes, or Java API. If you are running Java applications on the
client, you may also require the Sybase JDBC driver, jConnect, on the
client.

Java classes in the database
You can use either of the following sources for Java classes:

• Sybase runtime Java classes

• User-defined classes

Topic Page
The Java runtime environment 11

Configuring memory for Java in the database 13

Enabling the server for Java 13

Creating Java classes and JARs 14

Installing Java classes in the database 15

Viewing information about installed classes and JARs 18

Downloading installed classes and JARs 19

Removing classes and JARs 19

The Java runtime environment

12 Adaptive Server Enterprise

Sybase runtime Java classes

The Sybase Java VM supports a subset of JDK version 2.0 (UNIX and
Windows NT) classes and packages.

The Sybase runtime Java classes are the low-level classes installed to Java-
enable a database. They are downloaded automatically when Adaptive Server
is installed and are available thereafter from $SYBASE
/$SYBASE_ASE/lib/runtime.zip (UNIX) or
%SYBASE%\%SYBASE_ASE%\lib\runtime.zip (Windows NT). You do not
need to set the CLASSPATH environment variable specifically for Java in
Adaptive Server.

Sybase does not support runtime Java packages and classes that assume a
screen display, deal with networking and remote communications, or handle
security. See Chapter 8, “Reference Topics” for a list of supported and
unsupported packages and classes.

User-defined Java classes

You install user-defined classes into the database using the installjava utility.
Once installed, these classes are available from other classes in the database
and from SQL as user-defined datatypes.

JDBC drivers
The Sybase native JDBC driver that comes with Adaptive Server supports
JDBC versions 1.1 and 1.2, and is compliant with several classes and methods
of JDBC version 2.0. See Chapter 8, “Reference Topics,” for a complete list of
supported and not supported classes and methods.

If your system requires a JDBC driver on the client, you must use jConnect
version 5.5 or later, which supports JDBC version 2.0.

The Java VM
To ensure that each invoked method is executed as quickly as possible, Sybase
provides a Java VM. The Java VM runs on the server. The Java VM requires
little or no administration once installation is complete.

CHAPTER 2 Preparing for and Maintaining Java in the Database

Java in Adaptive Server Enterprise 13

Configuring memory for Java in the database
Use the sp_configure system procedure to change memory allocations for Java
in Adaptive Server. You can change the memory allocation for:

• size of global fixed heap – specifies memory space for internal data
structures.

• size of process object fixed heap – specifies the total memory space
available for all user connections using the Java VM.

• size of shared class heap – specifies the shared memory space for all Java
classes called into the Java VM.

See “Java Services” in the System Administration Guide for complete
information about these configuration parameters.

Enabling the server for Java
To enable the server and its databases for Java, enter this command from isql:

sp_configure "enable java", 1

Then shut down and restart the server.

By default, Adaptive Server is not enabled for Java. You cannot install Java
classes or perform any Java operations until the server is enabled for Java.

You can increase or decrease the amount of memory available for Java in
Adaptive Server and optimize performance using sp_configure. Java
configuration parameters are described in the System Administration Guide.

Disabling the server for Java
To disable Java in the database, enter this command from isql:

sp_configure "enable java", 0

Creating Java classes and JARs

14 Adaptive Server Enterprise

Creating Java classes and JARs
The Sybase-supported classes from the JDK are installed on your system when
you install Adaptive Server version 12 or later. This section describes the steps
for creating and installing your own Java classes.

To make your Java classes (or classes from other sources) available for use in
the server, follow these steps:

1 Write and save the Java code that defines the classes.

2 Compile the Java code.

3 Create Java archive (JAR) files to organize and contain your classes.

4 Install the JARs/classes in the database.

Writing the Java code
Use the Sun Java SDK or a development tool such as Sybase PowerJ to write
the Java code for your class declarations. Save the Java code in a file with an
extension of .java. The name and case of the file must be the same as that of
the class.

Note Make certain that any Java API classes used by your classes are among
the supported API classes listed in Chapter 8, “Reference Topics”.

Compiling Java code
This step turns the class declaration containing Java code into a new, separate
file containing bytecode. The name of the new file is the same as the Java code
file but has an extension of .class. You can run a compiled Java class in a Java
runtime environment regardless of the platform on which it was compiled or
the operating system on which it runs.

 Warning! Java classes that you install and use in the server must be compiled
with JDK 1.2.2. If you compile a class with a later JDK, you will be able to
install it in the server using the installjava utility, but you will get a
java.lang.ClassFormatError exception when you attempt to use the class.

CHAPTER 2 Preparing for and Maintaining Java in the Database

Java in Adaptive Server Enterprise 15

Saving classes in a JAR file
You can organize your Java classes by collecting related classes in packages
and storing them in JAR files. JAR files allow you to install or remove related
classes as a group.

Installing uncompressed JARs

To install Java classes in a database, save the classes or packages in a JAR file,
in uncompressed form. To create an uncompressed JAR file that contains Java
classes, use the Java jar cf0 (“zero”) command.

In this UNIX example, the jar command creates an uncompressed JAR file that
contains all .class files in the jcsPackage directory:

jar cf0 jcsPackage.jar jcsPackage/*.class

Installing compressed JARs

You can also install a compressed JAR file if you first expand the compressed
file using the x option of the jar command. In this UNIX example, abcPackage
is a compressed file.

1 Place the compressed JAR file in an empty directory and expand it:

jar xf0 abcPackage.jar

2 Delete the compressed JAR file so that it won’t be included in the new,
uncompressed JAR file:

rm abcPackage.jar

3 Create the uncompressed JAR file:

jar cf0 abcPackage.jar*

Installing Java classes in the database
To install Java classes from a client operating system file, use the installjava
(UNIX) or instjava (Windows NT) utility from the command line.

See the Adaptive Server Enterprise Utilities Guide for detailed information
about these utilities. Both utilities perform the same tasks; for simplicity, this
document uses UNIX examples.

Installing Java classes in the database

16 Adaptive Server Enterprise

Using installjava
installjava copies a JAR file into the Adaptive Server system and makes the
Java classes contained in the JAR available for use in the current database. The
syntax is:

installjava
-f file_name
[-new | -update]
[-j jar_name]
[-S server_name]
[-U user_name]
[-P password]
[-D database_name]
[-I interfaces_file]
[-a display_charset]
[-J client_charset]
[-z language]
[-t timeout]

For example, to install classes in the addr.jar file, enter:

installjava -f “/home/usera/jars/addr.jar”

The –f parameter specifies an operating system file that contains a JAR. You
must use the complete path name for the JAR.

This section describes retained JAR files (using -j) and updating installed JARs
and classes (using new and update). For more information about these and the
other options available with installjava, see the Utility Guide.

Note When you install a JAR file, Application Server copies the file to a
temporary table and then installs it from there. If you install a large JAR file,
you may need to expand the size of tempdb using the alter database command.

 Warning! Java classes that you install and use in the server must be compiled
with JDK 1.2.2. If you compile a class with a later JDK, you will be able to
install it in the server using the installjava utility, but you will get a
java.lang.ClassFormatError exception when you attempt to use the class.

Retaining the JAR file

When a JAR is installed in a database, the server disassembles the JAR,
extracts the classes, and stores them separately. The JAR is not stored in the
database unless you specify installjava with the -j parameter.

CHAPTER 2 Preparing for and Maintaining Java in the Database

Java in Adaptive Server Enterprise 17

Use of -j determines whether the Adaptive Server system retains the JAR
specified in installjava or uses the JAR only to extract the classes to be installed.

• If you specify the -j parameter, Adaptive Server installs the classes
contained in the JAR in the normal manner, and then retains the JAR and
its association with the installed classes.

• If you do not specify the -j parameter, Adaptive Server does not retain any
association of the classes with the JAR. This is the default option.

Sybase recommends that you specify a JAR name so that you can better
manage your installed classes. If you retain the JAR file:

• You can remove the JAR and all classes associated with it, all at once, with
the remove java statement. Otherwise, you must remove each class or
package of classes one at a time.

• You can use extractjava to download the JAR to an operating system file.
See “Downloading installed classes and JARs” on page 19.

Updating installed classes

The new and update clauses of installjava indicate whether you want new
classes to replace currently installed classes.

• If you specify new, you cannot install a class with the same name as an
existing class.

• If you specify update, you can install a class with the same name as an
existing class, and the newly installed class replaces the existing class.

 Warning! If you alter a class used as a column datatype by reinstalling a
modified version of the class, make sure that the modified class can read
and use existing objects (rows) in tables using that class as a datatype.
Otherwise, you may be unable to access existing objects without
reinstalling the original class.

Substitution of new classes for installed classes depends also on whether the
classes being installed or the already installed classes are associated with a
JAR. Thus:

• If you update a JAR, all classes in the existing JAR are deleted and
replaced with classes in the new JAR.

Viewing information about installed classes and JARs

18 Adaptive Server Enterprise

• A class can be associated only with a single JAR. You cannot install a class
in one JAR if a class of that same name is already installed and associated
with another JAR. Similarly, you cannot install a class not-associated with
a JAR if that class is currently installed and associated with a JAR.

You can, however, install a class in a retained JAR with the same name as
an installed class not associated with a JAR. In this case, the class not
associated with a JAR is deleted and the new class of the same name is
associated with the new JAR.

If you want to reorganize your installed classes in new JARs, you may find it
easier to first disassociate the affected classes from their JARs. See “Retaining
classes” on page 20 for more information.

Referencing other Java-SQL classes
Installed classes can reference other classes in the same JAR file and classes
previously installed in the same database, but they cannot reference classes in
other databases.

If the classes in a JAR file do reference undefined classes, an error may result:

• If an undefined class is referenced directly in SQL, it causes a syntax error
for “undefined class.”

• If an undefined class is referenced within a Java method that has been
invoked, it throws a Java exception that may be caught in the invoked Java
method or cause the general SQL exception described in “Exceptions in
Java-SQL methods” on page 29.

The definition of a class can contain references to unsupported classes and
methods as long as they are not actively referenced or invoked. Similarly, an
installed class can contain a reference to a user-defined class that is not
installed in the same database as long as the class is not instantiated or
referenced.

Viewing information about installed classes and JARs
To view information about classes and JARs installed in the database, use
sp_helpjava. The syntax is:

CHAPTER 2 Preparing for and Maintaining Java in the Database

Java in Adaptive Server Enterprise 19

sp_helpjava [‘class’ [, name [, 'detail' | , 'depends']] |
‘jar’ [, name [, 'depends']]]

To view detailed information about the Address class, for example, log in to isql
and enter:

sp_helpjava “class”, Address, detail

See “sp_helpjava” in the Reference Manual for more information.

Downloading installed classes and JARs
You can download copies of Java classes installed on one database for use in
other databases or applications.

Use the extractjava system utility to download a JAR file and its classes to a
client operating system file. For example, to download addr.jar to
~/home/usera/jars/addrcopy.jar, enter:

extractjava –j ’addr.jar’ -f
 ‘~/home/usera/jars/addrcopy.jar'

See the Utility Guide manual for more information.

Removing classes and JARs
Use the Transact-SQL remove java statement to uninstall one or more Java-
SQL classes from the database. remove java can specify one or more Java class
names, Java package names, or retained JAR names. For example, to uninstall
the package utilityClasses, from isql enter:

remove java package "utilityClasses"

Note Adaptive Server does not allow you to remove classes that are used as the
datatypes for columns and parameters or that are referenced by SQLJ functions
or stored procedures.

You must make sure that you do not remove subclasses or classes that are used
as variables or UDF return types.

Removing classes and JARs

20 Adaptive Server Enterprise

remove java package deletes all classes in the specified package and all of its
sub-packages.

See the Reference Manual for more information about remove java.

Retaining classes
You can delete a JAR file from the database but retain its classes as classes no
longer associated with a JAR. Use remove java with the retain classes option if,
for example, you want to rearrange the contents of several retained JARs.

For example, from isql enter:

remove java jar 'utilityClasses' retain classes

Once the classes are disassociated from their JARs, you can associate them
with new JARs using installjava with the new keyword.

Java in Adaptive Server Enterprise 21

C H A P T E R 3 Using Java Classes in SQL

This chapter describes how to use Java classes in an Adaptive Server
environment. The first sections give you enough information to get
started; succeeding sections provide more advanced information.

In this document, SQL columns and variables whose datatypes are Java-
SQL classes are described as Java-SQL columns and Java-SQL variables
or as Java-SQL data items.

The sample classes used in this chapter can be found in:

Topics Page
General concepts 22

Using Java classes as datatypes 23

Invoking Java methods in SQL 28

Representing Java instances 30

Assignment properties of Java-SQL data items 31

Datatype mapping between Java and SQL fields 33

Character sets for data and identifiers 34

Subtypes in Java-SQL data 34

The treatment of nulls in Java-SQL data 36

Java-SQL string data 40

Type and void methods 41

Equality and ordering operations 44

Evaluation order and Java method calls 45

Static variables in Java-SQL classes 46

Java classes in multiple databases 47

Java classes 51

General concepts

22 Adaptive Server Enterprise

• $SYBASE/$SYBASE_ASE/sample/JavaXml/JavaXml.zip (UNIX)

• %SYBASE%\Ase-15_0\sample\JavaXml\JavaXml.zip (Windows NT)

General concepts
This sections provides general Java and Java-SQL identifier information.

Java considerations
Before you use Java in your Adaptive Server database, here are some general
considerations.

• Java classes contain:

• Fields that have declared Java datatypes.

• Methods whose parameters and results have declared Java datatypes.

• Java datatypes for which there are corresponding SQL datatypes are
defined in “Datatype mapping between Java and SQL” on page 142.

• Java classes can include classes, fields, and methods that are private,
protected, friendly, or public.

Classes, fields and methods that are public can be referenced in SQL.
Classes, fields, and methods that are private, protected, or friendly cannot
be referenced in SQL, but they can be referenced in Java, and are subject
to normal Java rules.

• Java classes, fields, and methods all have various syntactic properties:

• Classes – the number of fields and their names

• Field – their datatypes

• Methods – the number of parameters and their datatypes, and the
datatype of the result

The SQL system determines these syntactic properties from the Java-SQL
classes themselves, using the Java Reflection API.

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 23

Java-SQL names
Java-SQL class names (identifiers) are limited to 255 bytes. Java-SQL field
and method names can be any length, but they must be 255 bytes or less if you
use them in Transact-SQL. All Java-SQL names must conform to the rules for
Transact-SQL identifiers if you use them in Transact-SQL statements.

Class, field, and method names of 30 or more bytes must be surrounded by
quotation marks.

The first character of the name must be either an alphabetic character
(uppercase or lowercase) or an underscore (_) symbol. Subsequent characters
can include alphabetic characters, numbers, the dollar ($) symbol, or the
underscore (_) symbol.

Java-SQL names are always case sensitive, regardless of whether the SQL
system is specified as case sensitive or case insensitive.

See Java-SQL identifiers on page 144 for more information about identifiers.

Using Java classes as datatypes
After you have installed a set of Java classes, you can reference them as
datatypes in SQL. To be used as a column datatype, a Java-SQL class must be
defined as public and must implement either java.io.Serializable or
java.io.Externalizable.

You can specify Java-SQL classes as:

• The datatypes of SQL columns

• The datatypes of Transact-SQL variables and parameters to Transact-SQL
stored procedures

• Default values for SQL columns

When you create a table, you can specify Java-SQL classes as the datatypes of
SQL columns:

create table emps (
name varchar(30),
home_addr Address,
mailing Address2Line null)

Using Java classes as datatypes

24 Adaptive Server Enterprise

The name column is an ordinary SQL character string, the home_addr and
mailing_addr columns can contain Java objects, and Address and Address2Line
are Java-SQL classes that have been installed in the database.

You can specify Java-SQL classes as the datatypes of Transact-SQL variables:

declare @A Address
declare @A2 Address2Line

You can also specify default values for Java-SQL columns, subject to the
normal constraint that the specified default must be a constant expression. This
expression is normally a constructor invocation using the new operator with
constant arguments, such as the following:

create table emps (
name varchar(30),
home_addr Address default new Address

('Not known', ''),
mailing_addr Address2Line

)

Creating and altering tables with Java-SQL columns
When you create or alter tables with Java-SQL columns, you can specify any
installed Java class as a column datatype. You can also specify how the
information in the column is to be stored. Your choice of storage options affects
the speed with which Adaptive Server references and updates the fields in these
columns.

Column values for a row typically are stored “in-row,” that is, consecutively on
the data pages allocated to a table. However, you can also store Java-SQL
columns in a separate “off-row” location in the same way that text and image
data items are stored. The default value for Java-SQL columns is off-row.

If a Java-SQL column is stored in-row:

• Objects stored in-row are processed more quickly than objects stored off-
row.

• An object stored in-row can occupy up to approximately 16K bytes,
depending on the page size of the database server and other variables. This
includes its entire serialization, not just the values in its fields. A Java
object whose runtime representation is more than the 16K limit generates
an exception, and the command aborts.

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 25

If a Java-SQL column is stored off-row, the column is subject to the restrictions
that apply to text and image columns:

• Objects stored off-row are processed more slowly than objects stored in-
row.

• An object stored off-row can be of any size—subject to normal limits on
text and image columns.

• An off-row column cannot be referenced in a check constraint.

Similarly, do not reference a table that contains an off-row column in a
check constraint. Adaptive Server allows you to include the check
constraint when you create or alter the table, but issues a warning message
at compile time and ignores the constraint at runtime.

• You cannot include an off-row column in the column list of a select query
with select distinct.

• You cannot specify an off-row column in a comparison operator, in a
predicate, or in a group by clause.

Partial syntax for create table with the in row/off row option is:

create table...column_name datatype
 [default {constant_expression | user | null}]
 {[{identity | null | not null}]
 [off row | [in row [(size_in_bytes)]]...

size_in_bytes specifies the maximum size of the in-row column. The value can
be as large as 16K bytes. The default value is 255 bytes.

The maximum in-row column size you enter in create table must include the
column’s entire serialization, not just the values in its fields, plus minimum
values for overhead.

To determine an appropriate column size that includes overhead and
serialization values, use the datalength system function. datalength allows you
to determine the actual size of a representative object you intend to store in the
column.

For example:

select datalength (new class_name(...))

where class_name is an installed Java-SQL class.

Partial syntax for alter table is:

Using Java classes as datatypes

26 Adaptive Server Enterprise

alter table...{add column_name datatype
 [default {constant_expression | user | null}]
 {identity | null} [off row | [in row]...

Note You cannot change the column size of an in-row column using alter
column in this Adaptive Server release.

Altering partitioned tables

If a table containing Java columns is partitioned, you cannot alter the table
without first dropping the partitions. To change the table schema:

1 Remove the partitions.

2 Use the alter table command.

3 Repartition the table.

Selecting, inserting, updating, and deleting Java objects
After you specify Java-SQL columns, the values that you assign to those data
items must be Java instances. Such instances are generated initially by calls to
Java constructors using the new operator. You can generate Java instances for
both columns and variables.

Constructor methods are pseudo instance methods. They create instances.
Constructor methods have the same name as the class, and have no declared
datatype. If you do not include a constructor method in your class definition, a
default method is provided by the Java base class object. You can supply more
than one constructor for each class, with different numbers and types of
arguments. When a constructor is invoked, the one with the proper number and
type of arguments is used.

In the following example, Java instances are generated for both columns and
variables:

declare @A Address, @AA Address, @A2 Address2Line,
 @AA2 Address2Line

 select @A = new Address()
 select @AA = new Address('123 Main Street', '99123')
 select @A2 = new Address2Line()
 select @AA2 = new Address2Line('987 Front Street',
 'Unit 2', '99543')

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 27

 insert into emps values('John Doe', new Address(),
 new Address2Line())
 insert into emps values('Bob Smith',

new Address('432 ElmStreet', ‘99654’),
new Address2Line('PO Box 99', 'attn: Bob Smith', '99678'))

Values assigned to Java-SQL columns and variables can then be assigned to
other Java-SQL columns and variables. For example:

declare @A Address, @AA Address, @A2 Address2Line,
 @AA2 Address2Line

 select @A = home_addr, @A2 = mailing_addr from emps
 where name = 'John Doe'
 insert into emps values ('George Baker', @A, @A2)

 select @AA2 = @A2
 update emps
 set home_addr = new Address('456 Shoreline Drive', '99321'),
 mailing_addr = @AA2
 where name = 'Bob Smith'

You can also copy values of Java-SQL columns from one table to another. For
example:

create table trainees (
name char(30),
home_addr Address,
mailing_addr Address2Line null

)
insert into trainees
select * from emps

where name in ('Don Green', 'Bob Smith',
'George Baker')

n reference and update the fields of Java-SQL columns and of Java-SQL
variables with normal SQL qualification. To avoid ambiguities with the SQL
use of dots to qualify names, use a double-angle (>>) to qualify Java field and
method names when referencing them in SQL.

declare @name varchar(100), @street varchar(100),
 @streetLine2 varchar(100), @zip char(10), @A Address

 select @A = new Address()
 select @A>>street = '789 Oak Lane'
 select @street = @A>>street

Invoking Java methods in SQL

28 Adaptive Server Enterprise

 select @street = home_add>>street, @zip = home_add>>zip from emps
 where name = 'Bob Smith'
 select @name = name from emps
 where home_addr>>street= '456 Shoreline Drive'

 update emps
 set home_addr>>street = '457 Shoreline Drive',

home_addr>>zip = '99323'
 where home_addr>>street = '456 Shoreline Drive'

Invoking Java methods in SQL
You can invoke Java methods in SQL by referencing them, with name
qualification, on instances for instance methods, and on either instances or
classes for static methods.

Instance methods are generally closely tied to the data encapsulated in a
particular instance of their class. Static (class) methods affect the whole class,
not a particular instance of the class. Static methods often apply to objects and
values from a wide range of classes.

Once you have installed a static method, it is ready for use. A class that
contains a static method for use as a function must be public, but it does not
need to be serializable.

One of the primary benefits of using Java with Adaptive Server is that you can
use static methods that return a value to the caller as user-defined functions
(UDFs).

You can use a Java static method as a UDF in a stored procedure, a trigger, a
where clause, or anywhere that you can use a built-in SQL function.

Java methods invoked directly in SQL as UDFs are subject to these limitations:

• If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

• Output parameters are not supported. A method can manipulate the data it
receives from a JDBC connection, but the only value it can return to its
caller is a single return value declared as part of its definition.

• Cross-database invocations of static methods are supported only if you use
a class instance as a column value.

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 29

Permission to execute any UDF is granted implicitly to public. If the UDF
performs SQL queries via JDBC, permission to access the data is checked
against the invoker of the UDF. Thus, if user A invokes a UDF that accesses
table t1, user A must have select permission on t1 or the query will fail. For a
more detailed discussion of security models for Java method invocations, see
“Security and permissions” on page 77.

To use Java static methods to return result sets and output parameters, you must
enclose the methods in SQL wrappers and invoke them as SQLJ stored
procedures or functions. See “Invoking Java methods in Adaptive Server” on
page 78 for a comparison of the ways you can invoke Java methods in Adaptive
Server.

Sample methods
The sample Address and Address2Line classes have instance methods named
toString(), and the sample Misc class has static methods named
stripLeadingBlanks(), getNumber(), and getStreet(). You can invoke value
methods as functions in a value expression.

declare @name varchar(100)
declare @street varchar(100)
declare @streetnum int
declare @A2 Address2Line

select @name = Misc.stripLeadingBlanks(name),

@street = Misc.stripLeadingBlanks(home_addr>>street),
@streetnum = Misc.getNumber(home_addr>>street),
@A2 = mailing_addr

from emps
where home_addr>>toString() like '%Shoreline%'

For information about void methods (methods with no returned value) see
“Type and void methods” on page 41.

Exceptions in Java-SQL methods
When the invocation of a Java-SQL method completes with unhandled
exceptions, a SQL exception is raised, and this error message displays:

Unhandled Java method exception

Representing Java instances

30 Adaptive Server Enterprise

The message text for the exception consists of the name of the Java class that
raised the exception, followed by the character string (if any) supplied when
the Java exception was thrown.

Representing Java instances
Non-Java clients such as isql cannot receive serialized Java objects from the
server. To allow you to view and use the object, Adaptive Server must convert
the object to a viewable representation.

To use an actual string value, Adaptive Server must invoke a method that
translates the object into a char or varchar value. The toString() method in the
Address class is an example of such a method. You must create your own
version of the toString() method so that you can work with the viewable
representation of the object.

Note The toString() method in the Java API does not convert the object to a
viewable representation. The toString() method you create overrides the
toString() method in the Java API.

When you use a toString() method, Adaptive Server imposes a limit on the
number of bytes returned. Adaptive Server truncates the printable
representation of the object to the value of the @@stringsize global variable.
The default value of @@stringsize is 50; you can change this value using the
set stringsize command. For example:

set stringsize 300

The display software on your computer may truncate the data item further so
that it fits on the screen without wrapping.

If you include a toString() or similar method in each class, you can return the
value of the object’s toString() method in either of two ways:

• You can select a particular field in the Java-SQL column, which
automatically invokes toString():

select home__addr>>street from emps

• You can select the column and the toString() method, which lists in one
string all of the field values in the column:

select home_addr>>toString() from emps

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 31

Assignment properties of Java-SQL data items
The values assigned to Java-SQL data items are derived ultimately from values
constructed by Java-SQL methods in the Java VM. However, the logical
representation of Java-SQL variables, parameters, and results is different from
the logical representation of Java-SQL columns.

• Java-SQL columns, which are persistent, are Java serialized streams stored
in the containing row of the table. They are stored values containing
representations of Java instances.

• Java-SQL variables, parameters, and function results are transient. They
do not actually contain Java-SQL instances, but instead contain references
to Java instances contained in the Java VM.

These differences in representation give rise to differences in assignment
properties as these examples illustrate.

• The Address constructor method with the new operator is evaluated in the
Java VM. It constructs an Address instance and returns a reference to it.
That reference is assigned as the value of Java-SQL variable @A:

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line

select @A = new Address('432 Post Lane', '99444')

• Variable @A contains a reference to a Java instance in the Java VM. That
reference is copied into variable @AA. Variables @A and @AA now
reference the same instance.

select @AA=@A

• This assignment modifies the zip field of the Address referenced by @A.
This is the same Address instance that is referenced by @AA. Therefore,
the values of @A.zip and @AA.zip are now both '99222'.

select @A>>zip='99222'

• The Address constructor method with the new operator constructs an
Address instance and returns a reference to it. However, since the target is
a Java-SQL column, the SQL system serializes the Address instance
denoted by that reference, and copies the serialized value into the new row
of the emps table.

insert into emps
values ('Don Green', new Address('234 Stone
Road', '99777'), new Address2Line())

Assignment properties of Java-SQL data items

32 Adaptive Server Enterprise

The Address2Line constructor method operates the same way as the
Address method, except that it returns a default instance rather than an
instance with specified parameter values. The action taken is, however, the
same as for the Address instance. The SQL system serializes the default
Address2Line instance, and stores the serialized value into the new row of
the emps table.

• The insert statement specifies no value for the mailing_addr column, so that
column will be set to null, in the same manner as any other column whose
value is not specified in an insert. This null value is generated entirely in
SQL, and initialization of the mailing_addr column does not involve the
Java VM at all.

insert into emps (name, home_addr) values ('Frank Lee', @A)

The insert statement specifies that the value of the home_addr column is to
be taken from the Java-SQL variable @A. That variable contains a
reference to an Address instance in the Java VM. Since the target is a Java-
SQL column, the SQL system serializes the Address instance denoted by
@A, and copies the serialized value into the new row of the emps table.

• This statement inserts a new emps row for 'Bob Brown.' The value of the
home_addr column is taken from the SQL variable @A. It is also a
serialization of the Java instance referenced by @A.

insert into emps (name, home_addr) values ('Bob Brown', @A)

• This update statement sets the zip field of the home_addr column of the
‘Frank Lee’ row to ‘99777.’ This has no effect on the zip field in the ‘Bob
Brown’ row, which is still ‘99444.’

update emps
set home_add>>zip = '99777'
where name = 'Frank Lee'

• The Java-SQL column home_addr contains a serialized representation of
the value of an Address instance. The SQL system invokes the Java VM to
deserialize that representation as a Java instance in the Java VM, and
return a reference to the new deserialized copy. That reference is assigned
to @AA. The deserialized Address instance that is referenced by @AA is
entirely independent of both the column value and the instance referenced
by @A.

select @AA = home_addr from emps where name = 'Frank Lee'

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 33

• This assignment modifies the zip field of the Address instance referenced
by @A. This instance is a copy of the home_addr column of the 'Frank Lee'
row, but is independent of that column value. The assignment therefore
does not modify the zip field of the home_addr column of the 'Frank Lee'
row.

select @A>>zip = '95678'

Datatype mapping between Java and SQL fields
When you transfer data in either direction between the Java VM and Adaptive
Server, you must take into account that the datatypes of the data items are
different in each system. Adaptive Server automatically maps SQL items to
Java items and vice versa according to the correspondence tables in “Datatype
mapping between Java and SQL” on page 142.

Thus, SQL type char translates to Java type String, the SQL type binary
translates to the Java type byte[], and so on.

• For the datatype correspondences from SQL to Java, char, varchar, and
varbinary types of any length correspond to Java String or byte[] datatypes,
as appropriate.

• For the datatype correspondences from Java to SQL:

• The Java String and byte[] datatypes correspond to SQL varchar and
varbinary, where the maximum length value of 16K bytes is defined
by Adaptive Server.

• The Java BigDecimal datatype corresponds to SQL
numeric(precision,scale), where precision and scale are defined by the
user.

In the emps table, the maximum value for the Address and Address2Line
classes, street, zip, and line2 fields is 255 bytes (the default value). The Java
datatype of these classes is java.String, and they are treated in SQL as
varchar(255).

An expression whose datatype is a Java object is converted to the
corresponding SQL datatype only when the expression is used in a SQL
context. For example, if the field home_addr>>street for employee ‘Smith’ is
260 characters, and begins ‘6789 Main Street ...:

select Misc.getStreet(home_addr>>street) from emps where name='Smith'

Character sets for data and identifiers

34 Adaptive Server Enterprise

The expression in the select list passes the 260-character value of
home_addr>>street to the getStreet() method (without truncating it to 255
characters). The getStreet() method then returns the 255-character string
beginning ‘Main Street….’. That 255-character string is now an element of the
SQL select list, and is, therefore, converted to the SQL datatype and (if need
be) truncated to 255 characters.

Character sets for data and identifiers
The character set for both Java source code and for Java String data is Unicode.
Fields of Java-SQL classes can contain Unicode data.

Note Java identifiers used in the fully qualified names of visible classes or in
the names of visible members can use only Latin characters and Arabic
numerals.

Subtypes in Java-SQL data
Class subtypes allow you to use subtype substitution and method override,
which are characteristics of Java. A conversion from a class to one of its
superclasses is a widening conversion; a conversion from a class to one of its
subclasses is a narrowing conversion.

• Widening conversions are performed implicitly with normal assignments
and comparisons. They are always successful, since every subclass
instance is also an instance of the superclass.

• Narrowing conversions must be specified with explicit convert
expressions. A narrowing conversion is successful only if the superclass
instance is an instance of the subclass, or a subclass of the subclass.
Otherwise, an exception occurs.

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 35

Widening conversions
You do not need to use the convert function to specify a widening conversion.
For example, since the Address2Line class is a subclass of the Address class,
you can assign Address2Line values to Address data items. In the emps table,
the home_addr column is an Address datatype and the mailing_addr column is
an Address2Line datatype:

update emps
set home_addr = mailing_addr
where home_addr is null

For the rows fulfilling the where clause, the home_addr column contains an
Address2Line, even though the declared type of home_addr is Address.

Such an assignment implicitly treats an instance of a class as an instance of a
superclass of that class. The runtime instances of the subclass retain their
subclass datatypes and associated data.

Narrowing conversions
You must use the convert function to convert an instance of a class to an
instance of a subclass of the class. For example:

update emps
 set mailing_addr = convert(Address2Line, home_addr)
 where mailing_addr is null

The narrowing conversions in the update statement cause an exception if they
are applied to any home_addr column that contains an Address instance that is
not an Address2Line. You can avoid such exceptions by including a condition
in the where clause:

update emps
 set mailing_addr = convert(Address2Line, home_addr)
 where mailing_addr is null
 and home_addr>>getClass()>>toString() = 'Address2Line'

The expression “home_addr>>getClass()>>toString()” invokes getClass()
and toString() methods of the Java Object class. The Object class is implicitly a
superclass of all classes, so the methods defined for it are available for all
classes.

You can also use a case expression:

update emps
 set mailing_addr =

The treatment of nulls in Java-SQL data

36 Adaptive Server Enterprise

 case
 when home_addr>>getClass()>>toString()
 ='Address2Line'
 then convert(Address2Line, home_addr)
 else null
 end

where mailing_addr is null

Runtime versus compile-time datatypes
Neither widening nor narrowing conversions modify the actual instance value
or its runtime datatype; they simply specify the class to be used for the compile-
time type. Thus, when you store Address2Line values from the mailing_addr
column into the home_address column, those values still have the runtime type
of Address2Line.

For example, the Address class and the Address2Line subclass both have the
method toString(), which returns a String form of the complete address data.

select name, home_addr>>toString() from emps
 where home_addr>>toString() not like '%Line2=[]'

For each row of emps, the declared type of the home_addr column is Address,
but the runtime type of the home_addr value is either Address or Address2Line,
depending on the effect of the previous update statement. For rows in which
the runtime value of the home_addr column is an Address, the toString()
method of the Address class is invoked, and for rows in which the runtime
value of the home_addr column is Address2Line, the toString() method of the
Address2Line subclass is invoked.

See “Null values when using the SQL convert function” on page 39 for a
description of null values for widening and narrowing conversions.

The treatment of nulls in Java-SQL data
This section discusses the use of nulls in Java-SQL data items.

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 37

References to fields and methods of null instances
If the value of the instance specified in a field reference is null, then the field
reference is null. Similarly, if the value of the instance specified in an instance
method invocation is null, then the result of the invocation is null.

Java has different rules for the effect of referencing a field or method of a null
instance. In Java, if you attempt to reference a field of a null instance, an
exception is raised.

For example, suppose that the emps table has the following rows:

insert into emps (name, home_addr)
values ("Al Adams",
new Address("123 Main", "95321"))

insert into emps (name, home_addr)
values ("Bob Baker",
new Address("456 Side", "95123"))

 insert into emps (name, home_addr)
values ("Carl Carter", null)

Consider the following select:

select name, home_addr>>zip from emps
where home_addr>>zip in ('95123', '95125', '95128')

 If the Java rule were used for the references to “home_addr>>zip,” then those
references would cause an exception for the “Carl Carter” row, whose
“home_addr” column is null. To avoid such an exception, you would need to
write such a select as follows:

select name,
case when home_addr is not null then home_addr>>zip
else null end

from emps
where case when home_addr is not null
then home_addr>>zip

else
null end

in ('95123', '95125', '95128')

The SQL convention is therefore used for references to fields and methods of
null instances: if the instance is null, then any field or method reference is null.
The effect of this SQL rule is to make the above case statement implicit.

The treatment of nulls in Java-SQL data

38 Adaptive Server Enterprise

However, this SQL rule for field references with null instances only applies to
field references in source (right-side) contexts, not to field references that are
targets (left-side) of assignments or set clauses. For example:

update emps
set home_addr>>zip D '99123'
where name D 'Charles Green'

This where clause is obviously true for the “Charles Green” row, so the update
statement tries to perform the set clause. This raises an exception, because you
cannot assign a value to a field of a null instance as the null instance has no
field to which a value can be assigned. Thus, field references to fields of null
instances are valid and return the null value in right-side contexts, and cause
exceptions in left-side contexts.

 The same considerations apply to invocations of methods of null instances,
and the same rule is applied. For example, if we modify the previous example
and invoke the toString() method of the home_addr column:

select name, home_addr>>toString()from emps
where home_addr>>toString() D
'StreetD234 Stone Road ZIPD 99777'

If the value of the instance specified in an instance method invocation is null,
then the result of the invocation is null. Hence, the select statement is valid
here, whereas it raises an exception in Java.

Null values as arguments to Java-SQL methods
The outcome of passing null as a parameter is independent of the actions of the
method for which it is an argument, but instead depends on the ability of the
return datatype to deliver a null value.

You cannot pass the null value as a parameter to a Java scalar type method; Java
scalar types are always non-nullable. However, Java object types can accept
null values.

For the following Java-SQL class:

public class General implements java.io.Serializable {
 public static int identity1(int I) {return I;}
 public static java.lang.Integer identity2
 (java.lang.Integer I) {return I;}
 public static Address identity3 (Address A) {return A;}
 }

Consider these calls:

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 39

declare @I int
declare @A Address;

select @I = General.identity1(@I)
select @I = General.identity2(new java.lang.Integer(@I))
select @A = General.identity3(@A)

The values of both variable @I and variable @A are null, since values have not
been assigned to them.

• The call of the identity1() method raises an exception. The datatype of the
parameter @I of identity1() is the Java int type, which is scalar and has no
null state. An attempt to pass a null valued argument to identity1() raises
an exception.

• The call of the identity2() method succeeds. The datatype of the parameter
of identity2() is the Java class java.lang.Integer, and the new expression
creates an instance of java.lang.Integer that is set to the value of variable
@I.

• The call of the identity3() method succeeds.

A successful call of identity1() never returns a null result because the return
type has no null state. A null cannot be passed directly because the method
resolution fails without parameter type information.

Successful calls of identity2() and identity3() can return null results.

Null values when using the SQL convert function
You use the convert function to convert a Java object of one class to a Java
object of a superclass or subclass of that class.

As shown in “Subtypes in Java-SQL data” on page 34, the home_addr column
of the emps table can contain values of both the Address class and the
Address2Line class. In this example:

select name, home_addr>>street, convert(Address2Line, home_addr)>>line2,
home_addr>>zip from emps

the expression “convert(Address2Line, home_addr)” contains a datatype
(Address2Line) and an expression (home_addr). At compile-time, the
expression (home_addr) must be a subtype or supertype of the class
(Address2Line). At runtime, the action of this convert invocation depends on
whether the runtime type of the expression’s value is a class, subclass, or
superclass:

Java-SQL string data

40 Adaptive Server Enterprise

• If the runtime value of the expression (home_addr) is the specified class
(Address2Line) or one of its subclasses, the value of the expression is
returned, with the specified datatype (Address2Line).

• If the runtime value of the expression (home_addr) is a superclass of the
specified class (Address), then a null is returned.

Adaptive Server evaluates the select statement for each row of the result. For
each row:

• If the value of the home_addr column is an Address2Line, then convert
returns that value, and the field reference extracts the line2 field. If convert
returns null, then the field reference itself is null.

• When a convert returns null, then the field reference itself evaluates to null.

Hence, the results of the select shows the line2 value for those rows whose
home_addr column is an Address2Line and a null for those rows whose
home_addr column is an Address. As described in “The treatment of nulls in
Java-SQL data” on page 36, the select also shows a null line2 value for those
rows in which the home_addr column is null.

Java-SQL string data
In Java-SQL columns, fields of type String are stored as Unicode.

When a Java-SQL String field is assigned to a SQL data item whose type is
char, varchar, nchar, nvarchar, or text, the Unicode data is converted to the
character set of the SQL system. Conversion errors are specified by the set
char_convert options.

When a SQL data item whose type is char, varchar, nchar, or text is assigned to
a Java-SQL String field that is stored as Unicode, the character data is
converted to Unicode. Undefined codepoints in such data cause conversion
errors.

Zero-length strings
In Transact-SQL, a zero-length character string is treated as a null value, and
the empty string () is treated as a single space.

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 41

To be consistent with Transact-SQL, when a Java-SQL String value whose
length is zero is assigned to a SQL data item whose type is char, varchar, nchar,
nvarchar, or text, the Java-SQL String value is replaced with a single space.

For example:

1> declare @s varchar(20)
2> select @s = new java.lang.String()
3> select @s, char_length(@s)
4> go

 (1 row affected)

----------------- -----------------
1

Otherwise, the zero-length value would be treated in SQL as a SQL null, and
when assigned to a Java-SQL String, the Java-SQL String would be a Java null.

Type and void methods
Java methods (both instance and static) are either type methods or void
methods. In general, type methods return a value with a result type, and void
methods perform some action(s) and return nothing.

For example, in the Address class:

• The toString() method is a type method whose type is String.

• The removeLeadingBlanks() method is a void method.

• The Address constructor method is a type method whose type is the
Address class.

You invoke type methods as functions and use the new keyword when invoking
a constructor method:

insert into emps
values ('Don Green', new Address('234 Stone Road', '99777'),

 new Address2Line())

select name, home_addr>>toString() from emps
 where home_addr>>toString() like ‘%Baker%’

Type and void methods

42 Adaptive Server Enterprise

The removeLeadingBlanks() method of the Address class is a void instance
method that modifies the street and zip fields of a given instance. You can
invoke removeLeadingBlanks() for the home_addr column of each row of the
emps table. For example:

update emps
 set home_addr =
 home_addr>>removeLeadingBlanks()

removeLeadingBlanks() removes the leading blanks from the street and zip
fields of the home_addr column. The Transact-SQL update statement does not
provide a framework or syntax for such an action. It simply replaces column
values.

Java void instance methods
To use the “update-in-place” actions of Java void instance methods in the SQL
system, Java in Adaptive Server treats a call of a Java void instance method as
follows:

For a void instance method M() of an instance CI of a class C, written
“CI.M(...)”:

• In SQL, the call is treated as a type method call. The result type is
implicitly class C, and the result value is a reference to CI. That reference
identifies a copy of the instance CI after the actions of the void instance
method call.

• In Java, this call is a void method call, which performs its actions and
returns no value.

For example, you can invoke the removeLeadingBlanks() method for the
home_addr column of selected rows of the emps table as follows:

update emps
 set home_addr = home_addr>>removeLeadingBlanks()
 where home_addr>>removeLeadingBlanks()>>street like “123%”

1 In the where clause, “home_addr>>removeLeadingBlanks()” calls the
removeLeadingBlanks() method for the home_addr column of a row of the
emps table. removeLeadingBlanks() strips the leading blanks from the
street and zip fields of a copy of the column. The SQL system then returns
a reference to the modified copy of the home_addr column. The
subsequent field reference:

home_addr>>removeLeadingBlanks()>>street

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 43

returns the street field that has the leading blanks removed. The references
to home_addr in the where clause are operating on a copy of the column.
This evaluation of the where clause does not modify the home_addr
column.

2 The update statement performs the set clause for each row of emps in
which the where clause is true.

3 On the right-side of the set clause, the invocation of
“home_addr>>removeLeadingBlanks()” is performed as it was for the
where clause: removeLeadingBlank() strips the leading blanks from street
and zip fields of that copy. The SQL system then returns a reference to the
modified copy of the home_addr column.

4 The Address instance denoted by the result of the right side of the set
clause is serialized and copied into the column specified on the left-side of
the set clause: the result of the expression on the right side of the set clause
is a copy of the home_addr column in which the leading blanks have been
removed from the street and zip fields. The modified copy is then assigned
back to the home_addr column as the new value of that column.

The expressions of the right and left side of the set clause are independent, as
is normal for the update statement.

The following update statement shows an invocation of a void instance method
of the mailing_addr column on the right side of the set clause being assigned to
the home_address column on the left side.

update emps
 set home_addr = mailing_addr>>removeLeadingBlanks()
 where ...

In this set clause, the void method removeLeadingBlanks() of the mailing_addr
column yields a reference to a modified copy of the Address2Line instance in
the mailing_addr column. The instance denoted by that reference is then
serialized and assigned to the home_addr column. This action updates the
home_addr column; it has no effect on the mailing_addr column.

Java void static methods
You cannot invoke a void static method using a simple SQL execute command.
Rather, you must place the invocation of the void static method in a select
statement.

Equality and ordering operations

44 Adaptive Server Enterprise

For example, suppose that a Java class C has a void static method M(...), and
assume that M() performs an action you want to invoke in SQL. For example,
M() can use JDBC calls to perform a series of SQL statements that have no
return values, such as create or drop, that would be appropriate for a void
method.

You must invoke the void static method in a select command, such as:

select C.M(...)

To allow void static methods to be invoked using a select, void static methods
are treated in SQL as returning a value of datatype int with a value of null.

Equality and ordering operations
You can use equality and ordering operators when you use Java in the database.
You cannot:

• Reference Java-SQL data items in ordering operations.

• Reference Java-SQL data items in equality operations if they are stored in
an off-row column.

• Use the order by clause, which requires that you determine the sort order.

• Make direct comparisons using the “>”, “<”, “<=”, or “>=” operator.

These equality operations are allowed for in-row columns:

• Use of the distinct keyword, which is defined in terms of equality of rows,
including Java-SQL columns.

• Direct comparisons using the “=” and “!=” operators.

• Use of the union operator (not union all), which eliminates duplicates, and
requires the same kind of comparisons as the distinct clause.

• Use of the group by clause, which partitions the rows into sets with equal
values of the grouping column.

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 45

Evaluation order and Java method calls
Adaptive Server does not have a defined order for evaluating operands of
comparisons and other operations. Instead, Adaptive Server evaluates each
query and chooses an evaluation order based on the most rapid rate of
execution.

This section describes how different evaluation orders affect the outcome when
you pass columns or variables and parameters as arguments. The examples in
this section use the following Java-SQL class:

public class Utility implements java.io.Serializable {
 public static int F (Address A) {
 if (A.zip.length() > 5) return 0;
 else {A.zip = A.zip + "-1234"; return 1;}

}
 public static int G (Address A) {
 if (A.zip.length() > 5) return 0;
 else {A.zip = A.zip + "-1234"; return 1;}

}
}

Columns
In general, avoid invoking in the same SQL statement multiple methods on the
same Java-SQL object. If at least one of them modifies the object, the order of
evaluation can affect the outcome.

For example, in this example:

select * from emp E
where Utility.F(E.home_addr) > Utility.F(E.home_addr)

the where clause passes the same home_addr column in two different method
invocations. Consider the evaluation of the where clause for a row whose
home_addr column has a 5-character zip, such as “95123.”

Adaptive Server can initially evaluate either the left or right side of the
comparison. After the first evaluation completes, the second is processed.
Because it executes faster this way, Adaptive Server may let the second
invocation see the modifications of the argument made by the first invocation.

Static variables in Java-SQL classes

46 Adaptive Server Enterprise

In the example, the first invocation chosen by Adaptive Server returns 1, and
the second returns 0. If the left operand is evaluated first, the comparison is
1>0, and the where clause is true; if the right operand is evaluated first, the
comparison is 0>1, and the where clause is false.

Variables and parameters
Similarly, the order of evaluation can affect the outcome when passing
variables and parameters as arguments.

Consider the following statements:

declare @A Address
declare @Order varchar(20)

select @A = new Address('95444', '123 Port Avenue')
select case when Utility.F(@A)>Utility.G(@A)

then ‘Left’ else ‘Right’ end
select @Order = case when utility.F(@A) > utility.G(@A)
 then 'Left' else 'Right' end

The new Address has a five-character zip code field. When the case expression
is evaluated, depending on whether the left or right operand of the comparison
is evaluated first, the comparison is either 1>0 or 0>1, and the @Order variable
is set to ‘Left’ or ‘Right’ accordingly.

As for column arguments, the expression value depends on the evaluation
order. Depending on whether the left or right operand of the comparison is
evaluated first, the resulting value of the zip field of the Address instance
referenced by @A is either “95444-4321” or “95444-1234.”

Static variables in Java-SQL classes
A Java variable that is declared static is associated with the Java class, rather
than with each instance of the class. The variable is allocated once for the entire
class.

For example, you might include a static variable in the Address class that
specifies the recommended limit on the length of the Street field:

public class Address implements java.io.Serializable {

public static int recommendedLimit;

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 47

public String street;
public String zip;

// ...
}

You can specify that a static variable is final, which indicates that it is not
updatable:

 public static final int recommendedLimit;

Otherwise, you can update the variable.

 You reference a static variable of a Java class in SQL by qualifying the static
variable with an instance of the class. For example:

declare @a Address
select @a>>recommendedLimit

If you don't have an instance of the class, you can use the following technique:

select convert(Address, null)>>recommendedLimit

The expression “(convert(null, Address))” converts a null value to an Address
type; that is, it generates a null Address instance, which you can then qualify
with the static variable name. You cannot reference a static variable of a Java
class in SQL by qualifying the static variable with the class name. For example,
the following are both incorrect:

select Address.recommendedLimit

select Address>>recommendedLimit

Values assigned to non-final static variables are accessible only within the
current session.

Java classes in multiple databases
You can store Java classes of the same name in different databases in the same
Adaptive Server system. This section describes how you can use these classes.

Java classes in multiple databases

48 Adaptive Server Enterprise

Scope
When you install a Java class or set of classes, it is installed in the current
database. When you dump or load a database, the Java-SQL classes that are
currently installed in that database are always included—even if classes of the
same name exist in other databases in the Adaptive Server system.

You can install Java classes with the same name in different databases. These
synonymous classes can be:

• Identical classes that have been installed in different databases.

• Different classes that are intended to be mutually compatible. Thus, a
serialized value generated by either class is acceptable to the other.

• Different classes that are intended to be “upward” compatible. That is, a
serialized value generated by one of the classes should be acceptable to the
other, but not vice versa.

• Different classes that are intended to be mutually incompatible; for
example, a class named Sheet designed for supplies of paper, and other
classes named Sheet designed for supplies of linen.

Cross-database references
You can reference objects stored in table columns in one database from another
database.

For example, assume the following configuration:

• The Address class is installed in db1 and db2.

• The emps table has been created in both db1 with owner Smith, and in db2,
with owner Jones.

In these examples, the current database is db1. You can invoke a join or a
method across databases. For example:

• A join across databases might look like this:

declare @count int
select @count(*)

from db2.Jones.emps, db1.Smith.emps
where db2.Jones.emps.home_addr>>zip =

db1.Smith.emps.home_addr>>zip

• A method invocation across databases might look like this:

select db2.Jones.emps.home_addr>>toString()

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 49

from db2.Jones.emps
where db2.Jones.emps.name = 'John Stone'

In these examples, instance values are not transferred. Fields and methods of
an instance contained in db2 are merely referenced by a routine in db1. Thus,
for across-database joins and method invocations:

• db1 need not contain an Address class.

• If db1 does contain an Address class, it can have completely different
properties than the Address class in db2.

Inter-class transfers
You can assign an instance of a class in one database to an instance of a class
of the same name in another database. Instances created by the class in the
source database are transferred into columns or variables whose declared type
is the class in the current (target) database.

You can insert or update from a table in one database to a table in another
database. For example:

insert into db1.Smith.emps select * from
db2.Jones.emps

update db1.Smith.emps
set home_addr = (select db2.Jones.emps.home_addr

from db2.Jones.emps
where db2.Jones.emps.name =

db1.Smith.emps.name)

You can insert or update from a variable in one database to another database.
(The following fragment is in a stored procedure on db2.) For example:

declare @home_addr Address
select @home_addr = new Address(‘94608’, ‘222 Baker

Street’)
insert into db1.Janes.emps(name, home_addr)

values (‘Jone Stone’, @home_addr)

In these examples, instance values are transferred between databases. You can:

• Transfer instances between two local databases.

• Transfer instances between a local database and a remote database.

• Transfer instances between a SQL client and an Adaptive Server.

Java classes in multiple databases

50 Adaptive Server Enterprise

• Replace classes using install and update statements or remove and update
statements.

In an inter-class transfer, the Java serialization is transferred from the source to
the target. If the class in the source database is not compatible with the class in
the target database, then the Java exception InvalidClassException is raised.

Passing inter-class arguments
You can pass arguments between classes of the same name in different
databases.When passing inter-class arguments:

• A Java-SQL column is associated with the version of the specified Java
class in the database that contains the column.

• A Java-SQL variable (in Transact-SQL) is associated with the version of
the specified Java class in the current database.

• A Java-SQL intermediate result of class C is associated with the version of
class C in the same database as the Java method that returned the result.

• When a Java instance value JI is assigned to a target variable or column,
or passed to a Java method, JI is converted from its associated class to the
class associated with the receiving target or method.

Temporary and work databases
All rules for Java classes and databases also apply to temporary databases and
the model database:

• Java-SQL columns of temporary tables contain byte string serializations
of the Java instances.

• A Java-SQL column is associated with the version of the specified class in
the temporary database.

You can install Java classes in a temporary database, but they persist only as
long as the temporary database persists.

The simplest way to provide Java classes for reference in temporary databases
is to install Java classes in the model database. They are then present in any
temporary database derived from the model.

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 51

 Java classes
This section shows the simple Java classes that this chapter uses to illustrate
Java in Adaptive Server. You can also find these classes and their Java source
code in $SYBASE/$SYBASE_ASE/sample/JavaXml/JavaXml.zip. (UNIX) or
%SYBASE%\Ase-15_0\sample\JavaXml\JavaXml.zip (Windows NT).

This is the Address class:

//
// Copyright (c) 2005
// Sybase, Inc
// Dublin, CA 94568
// All Rights Reserved
//
/**
* A simple class for address data, to illustrate using a Java class
* as a SQL datatype.
*/

public class Address implements java.io.Serializable {

/**
* The street data for the address.
* @serial A simple String value.
*/
 public String street;

/**
* The zipcode data for the address.
* @serial A simple String value.
*/
 String zip;

/** A default constructor.
*/

public Address () {
 street = "Unknown";
 zip = "None";
 }
/**
* A constructor with parameters
* @param S a string with the street information
* @param Z a string with the zipcode information
*/
 public Address (String S, String Z) {
 street = S;

Java classes

52 Adaptive Server Enterprise

 zip = Z;
 }
/**
* A method to return a display of the address data.
* @returns a string with a display version of the address data.
*/
 public String toString() {
 return "Street= " + street + " ZIP= " + zip;
 }
/**
* A void method to remove leading blanks.
* This method uses the static method
* <code>Misc.stripLeadingBlanks</code>.
*/

public void removeLeadingBlanks() {
 street = Misc.stripLeadingBlanks(street);
 zip = Misc.stripLeadingBlanks(street);
 }
}

This is the Address2Line class, which is a subclass of the Address class:

//
// Copyright (c) 2005
// Sybase, Inc
// Dublin, CA 94568
// All Rights Reserved
//
/**
* A subclass of the Address class that adds a seond line of address data,
* <p>This is a simple subclass to illustrate using a Java subclass
* as a SQL datatype.
*/
public class Address2Line extends Address implements java.io.Serializable {

/**
* The second line of street data for the address.
* @serial a simple String value
*/
 String line2;
/**
* A default constructor
*/
 public Address2Line () {
 street = "Unknown";
 line2 = " ";
 zip = "None";

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 53

 }
/**
* A constructor with parameters.
* @param S a string with the street information
* @param L2 a string with the second line of address data
* @param Z a string with the zipcode information
*/
public Address2Line (String S, String L2, String Z) {
 street = S;
 line2 = L2;
 zip = Z;
}

/**
* A method to return a display of the address data
* @returns a string with a display version of the address data
*/

public String toString() {
 return "Street= " + street + " Line2= " + line2 + " ZIP= " + zip;
}

/**
* A void method to remove leading blanks.
* This method uses the static method
* <code>Misc.stripLeadingBlanks</code>.
*/

public void removeLeadingBlanks() {
 line2 = Misc.stripLeadingBlanks(line2);
 super.removeLeadingBlanks();
 }
}

The Misc class contains sets of miscellaneous routines:
//
// Copyright (c) 2005
// Sybase, Inc
// Dublin, CA 94568
// All Rights Reserved
//
/**
* A non-instantiable class with miscellaneous static methods
* that illustrate the use of Java methods in SQL.
*/

public class Misc{

Java classes

54 Adaptive Server Enterprise

/**
* The Misc class contains only static methods and cannot be instantiated.
*/

private Misc() { }

/**
* Removes leading blanks from a String
*/

public static String stripLeadingBlanks(String s) {
 if (s == null) return null;
 for (int scan=0; scan<s.length(); scan++)
 if (!java.lang.Character.isWhitespace(s.charAt(scan)))
 break;
 } else if (scan == s.length()){

return "";
 } else return s.substring(scan);

}
 }

}
return "";

}
/**
* Extracts the street number from an address line.
* e.g., Misc.getNumber(" 123 Main Street") == 123
* Misc.getNumber(" Main Street") == 0
* Misc.getNumber("") == 0
* Misc.getNumber(" 123 ") == 123
* Misc.getNumber(" Main 123 ") == 0
* @param s a string assumed to have address data
* @return a string with the extracted street number
*/

public static int getNumber (String s) {
 String stripped = stripLeadingBlanks(s);

if (s==null) return -1;
 for(int right=0; right < stripped.length(); right++){
 if (!java.lang.Character.isDigit(stripped.charAt(right))) {

break;
 } else if (right==0){

return 0;
 } else {

return java.lang.Integer.parseInt
(stripped.substring(0, right), 10);

 }

CHAPTER 3 Using Java Classes in SQL

Java in Adaptive Server Enterprise 55

}
return -1;

}

/**
* Extract the "street" from an address line.
* e.g., Misc.getStreet(" 123 Main Street") == "Main Street"
* Misc.getStreet(" Main Street") == "Main Street"
* Misc.getStreet("") == ""
* Misc.getStreet(" 123 ") == ""
* Misc.getStreet(" Main 123 ") == "Main 123"
* @param s a string assumed to have address data
* @return a string with the extracted street name
*/

public static String getStreet(String s) {
 int left;

if (s==null) return null;
 for (left=0; left<s.length(); left++){

if(java.lang.Character.isLetter(s.charAt(left))) {
break;

} else if (left == s.length()) {
return "";

 } else {
return s.substring(left);

}
}
return "";

 }
}

Java classes

56 Adaptive Server Enterprise

Java in Adaptive Server Enterprise 57

C H A P T E R 4 Data Access Using JDBC

This chapter describes how to use Java Database Connectivity (JDBC) to
access data.

Overview
JDBC provides a SQL interface for Java applications. If you want to
access relational data from Java, you must use JDBC calls.

You can use JDBC with the Adaptive Server SQL interface in either of
two ways:

• JDBC on the client – Java client applications can make JDBC calls to
Adaptive Server using the Sybase jConnect JDBC driver.

• JDBC on the server – Java classes installed in the database can make
JDBC calls to the database using the JDBC driver native to Adaptive
Server.

The use of JDBC calls to perform SQL operations is essentially the same
in both contexts.

This chapter provides sample classes and methods that describe how you
might perform SQL operations using JDBC. These classes and methods
are not intended to serve as templates, but as general guidelines.

Topics Page
Overview 57

JDBC concepts and terminology 58

Differences between client- and server-side JDBC 58

Permissions 59

Using JDBC to access data 59

Error handling in the native JDBC driver 66

The JDBCExamples class 68

JDBC concepts and terminology

58 Adaptive Server Enterprise

JDBC concepts and terminology
JDBC is a Java API and a standard part of the Java class libraries that control
basic functions for Java application development. The SQL capabilities that
JDBC provides are similar to those of ODBC and dynamic SQL.

The following sequence of events is typical of a JDBC application:

1 Create a Connection object – call the getConnection() static method of the
DriverManager class to create a Connection object. This establishes a
database connection.

2 Generate a Statement object – use the Connection object to generate a
Statement object.

3 Pass a SQL statement to the Statement object – if the statement is a query,
this action returns a ResultSet object.

The ResultSet object contains the data returned from the SQL statement,
but provides it one row at a time (similar to the way a cursor works).

4 Loop over the rows of the results set – call the next() method of the
ResultSet object to:

• Advance the current row (the row in the result set that is being
exposed through the ResultSet object) by one row.

• Return a Boolean value (true/false) to indicate whether there is a row
to advance to.

5 For each row, retrieve the values for columns in the ResultSet object – use
the getInt(), getString(), or similar method to identify either the name or
position of the column.

Differences between client- and server-side JDBC
The difference between JDBC on the client and in the database server is in how
a connection is established with the database environment.

When you use client-side or server-side JDBC, you call the
Drivermanager.getConnection() method to establish a connection to the server.

• For client-side JDBC, you use the Sybase jConnect JDBC driver, and call
the Drivermanager.getConnection() method with the identification of the
server. This establishes a connection to the designated server.

CHAPTER 4 Data Access Using JDBC

Java in Adaptive Server Enterprise 59

• For server-side JDBC, you use the Adaptive Server native JDBC driver,
and call the Drivermanager.getConnection() method with one of the
following values:

• jdbc:default:connection

• jdbc:sybase:ase

• jdbc:default

• empty string

This establishes a connection to the current server. Only the first call to the
getConnection() method creates a new connection to the current server.
Subsequent calls return a wrapper of that connection with all connection
properties unchanged.

You can write JDBC classes to run at both the client and the server by using a
conditional statement to set the URL.

Permissions
• Java execution permissions – like all Java classes in the database, classes

containing JDBC statements can be accessed by any user. There is no
equivalent of the grant execute statement that grants permission to execute
procedures in Java methods, and there is no need to qualify the name of a
class with the name of its owner.

• SQL execution permissions – Java classes are executed with the
permissions of the connection executing them. This behavior is different
from that of stored procedures, which execute with granted permission by
the database owner.

Using JDBC to access data
This section describes how you can use JDBC to perform the typical operations
of a SQL application. The examples are extracted from the class
JDBCExamples, which is described in “The JDBCExamples class” on page 68
and in $SYBASE/$SYBASE_ASE/sample/JavaXML/JavaXml.zip (UNIX) or
%SYBASE%\Ase-12_5\sample\JavaXML\JavaXml.zip (Windows NT).

Using JDBC to access data

60 Adaptive Server Enterprise

JDBCExamples illustrates the basics of a user interface and shows the internal
coding techniques for SQL operations.

Overview of the JDBCExamples class
The JDBCExamples class uses the Address class shown in “Sample Java
classes” on page 10. To execute these examples on your machine, install the
Address class on the server and include it in the Java CLASSPATH of the
jConnect client.

You can call the methods of JDBCExamples from either a jConnect client or
Adaptive Server.

Note You must create or drop stored procedures from the jConnect client. The
Adaptive Server native driver does not support create procedure and drop
procedure statements.

JDBCExamples static methods perform the following SQL operations:

• Create and drop an example table, xmp:

 create table xmp (id int, name varchar(50), home Address)

• Create and drop a sample stored procedure, inoutproc:

create procedure inoutproc @id int, @newname varchar(50),
 @newhome Address, @oldname varchar(50) output, @oldhome
 Address output as

select @oldname = name, @oldhome = home from xmp
 where id=@id
update xmp set name=@newname, home = @newhome
 where id=@id

• Insert a row into the xmp table.

• Select a row from the xmp table.

• Update a row of the xmp table.

• Call the stored procedure inoutproc, which has both input parameters and
output parameters of datatypes java.lang.String and Address.

JDBCExamples operates only on the xmp table and inoutproc procedure.

CHAPTER 4 Data Access Using JDBC

Java in Adaptive Server Enterprise 61

The main() and serverMain() methods
JDBCExamples has two primary methods:

• main() – is invoked from the command line of the jConnect client.

• serverMain() – performs the same actions as main(), but is invoked within
Adaptive Server.

All actions of the JDBCExamples class are invoked by calling one of these
methods, using a parameter to indicate the action to be performed.

Using main()

• You can invoke the main() method from a jConnect command line as
follows:

java JDBCExamples
“server-name:port-number?user=user-name&password=password” action

You can determine server-name and port-number from your interfaces file,
using the dsedit tool. user-name and password are your user name and
password. If you omit &password=password, the default is the empty password.
Here are two examples:

"antibes:4000?user=smith&password=1x2x3"
"antibes:4000?user=sa"

Make sure that you enclose the parameter in quotation marks.

The action parameter can be create table, create procedure, insert, select,
update, or call. It is case insensitive.

You can invoke JDBCExamples from a jConnect command line to create the
table xmp and the stored procedure inoutproc as follows:

java JDBCExamples “antibes:4000?user=sa” CreateTable
java JDBCExamples “antibes:4000?user=sa” CreateProc

You can invoke JDBCExamples for insert, select, update, and call actions as
follows:

java JDBCExamples “antibes:4000?user=sa” insert
java JDBCExamples “antibes:4000?user=sa” update
java JDBCExamples “antibes:4000?user=sa” call
java JDBCExamples “antibes:4000?user=sa” select

These invocations display the message “Action performed.”

To drop the table xmp and the stored procedure inoutproc, enter:

Using JDBC to access data

62 Adaptive Server Enterprise

java JDBCExamples “antibes:4000?user=sa” droptable
java JDBCExamples “antibes:4000?user=sa” dropproc

Using serverMain()

Note Because the server-side JDBC driver does not support create procedure
or drop procedure, create the table xmp and the example stored procedure
inoutproc with client-side calls of the main() method before executing these
examples. Refer to “Overview of the JDBCExamples class” on page 60.

After creating xmp and inoutproc, you can invoke the serverMain() method as
follows:

select JDBCExamples.serverMain('insert')
go
select JDBCExamples.serverMain('select')
go
select JDBCExamples.serverMain('update')
go
select JDBCExamples.serverMain('call')
go

Note Server-side calls of serverMain() do not require a server-name:port-
number parameter; Adaptive Server simply connects to itself.

Obtaining a JDBC connection: the Connecter() method
Both main() and serverMain() call the connecter() method, which returns a
JDBC Connection object. The Connection object is the basis for all subsequent
SQL operations.

Both main() and serverMain() call connecter() with a parameter that specifies
the JDBC driver for the server- or client-side environment. The returned
Connection object is then passed as an argument to the other methods of the
JDBCExamples class. By isolating the connection actions in the connecter()
method, JDBCExamples’ other methods are independent of their server- or
client-side environment.

CHAPTER 4 Data Access Using JDBC

Java in Adaptive Server Enterprise 63

Routing the action to other methods: the doAction() method
The doAction() method routes the call to one of the other methods, based on the
action parameter.

doAction() has the Connection parameter, which it simply relays to the target
method. It also has a parameter locale, which indicates whether the call is
server- or client-side. Connection raises an exception if either create procedure
or drop procedure is invoked in a server-side environment.

Executing imperative SQL operations: the doSQL() method
The doSQL() method performs SQL actions that require no input or output
parameters such as create table, create procedure, drop table, and drop
procedure.

doSQL() has two parameters: the Connection object and the SQL statement it
is to perform. doSQL() creates a JDBC Statement object and uses it to execute
the specified SQL statement.

Executing an update statement: the updater() method
The updater() method performs a Transact-SQL update statement. The update
action is:

String sql = "update xmp set name = ?, home = ? where id = ?";

It updates the name and home columns for all rows with a given id value.

The update values for the name and home column, and the id value, are
specified by parameter markers (?). updater() supplies values for these
parameter markers after preparing the statement, but before executing it. The
values are specified by the JDBC setString(),
setObject(), and setInt() methods with these parameters:

• The ordinal parameter marker to be substituted

• The value to be substituted

For example:

pstmt.setString(1, name);
pstmt.setObject(2, home);
pstmt.setInt(3, id);

After making these substitutions, updater() executes the update statement.

Using JDBC to access data

64 Adaptive Server Enterprise

To simplify updater(), the substituted values in the example are fixed.
Normally, applications compute the substituted values or obtain them as
parameters.

Executing a select statement: the selecter() method
The selecter() method executes a Transact-SQL select statement:

String sql = "select name, home from xmp where id=?";

The where clause uses a parameter marker (?) for the row to be selected. Using
the JDBC setInt() method, selecter() supplies a value for the parameter marker
after preparing the SQL statement:

PreparedStatement pstmt =
con.prepareStatement(sql);

pstmt.setInt(1, id);

selecter() then executes the select statement:

ResultSet rs = pstmt.executeQuery();

Note For SQL statements that return no results, use doSQL() and updater().
They execute SQL statements with the executeUpdate() method.

 For SQL statements that do return results, use the executeQuery() method,
which returns a JDBC ResultSet object.

The ResultSet object is similar to a SQL cursor. Initially, it is positioned before
the first row of results. Each call of the next() method advances the ResultSet
object to the next row, until there are no more rows.

selecter() requires that the ResultSet object have exactly one row. The selecter(
) method invokes the next method, and checks for the case where ResultSet has
no rows or more than one row.

 if (rs.next()) {
 name = rs.getString(1);
 home = (Address)rs.getObject(2);
 if (rs.next()) {
 throw new Exception("Error: Select returned multiple rows");
 } else { // No action
 }
 } else { throw new Exception("Error: Select returned no rows");
 }

CHAPTER 4 Data Access Using JDBC

Java in Adaptive Server Enterprise 65

In the above code, the call of methods getString() and getObject() retrieve the
two columns of the first row of the result set. The expression
“(Address)rs.getObject(2)” retrieves the second column as a Java object, and
then coerces that object to the Address class. If the returned object is not an
Address, then an exception is raised.

selecter() retrieves a single row and checks for the cases of no rows or more
than one row. An application that processes a multiple row ResultSet would
simply loop on the calls of the next() method, and process each row as for a
single row.

Executing in batch
mode

If you want to execute a batch of SQL statements, make sure that you use the
execute() method. If you use executeQuery() for batch mode:

• If the batch operation does not return a result set (contains no select
statements), the batch executes without error.

• If the batch operation returns one result set, all statements after the
statement that returns the result are ignored. If getXXX() is called to get an
output parameter, the remaining statements execute and the current result
set is closed.

• If the batch operation returns more than one result set, an exception is
raised and the operation aborts.

Using execute() ensures that the complete batch executes for all cases.

Calling a SQL stored procedure: the caller() method
The caller() method calls the stored procedure inoutproc:

create proc inoutproc @id int, @newname varchar(50), @newhome Address,
 @oldname varchar(50) output, @oldhome Address output as

 select @oldname = name, @oldhome = home from xmp where id=@id
 update xmp set name=@newname, home = @newhome where id=@id

This procedure has three input parameters (@id, @newname, and @newhome)
and two output parameters (@oldname and @oldhome). caller() sets the name
and home columns of the row of table xmp with the ID value of @id to the
values @newname and @newhome, and returns the former values of those
columns in the output parameters @oldname and @oldhome.

The inoutproc procedure illustrates how to supply input and output parameters
in a JDBC call.

Error handling in the native JDBC driver

66 Adaptive Server Enterprise

caller() executes the following call statement, which prepares the call
statement:

CallableStatement cs = con.prepareCall("{call inoutproc (?, ?, ?, ?, ?)}");

All of the parameters of the call are specified as parameter markers (?).

caller() supplies values for the input parameters using JDBC setInt(), setString(
), and setObject() methods that were used in the doSQL(), updatAction(), and
selecter() methods:

 cs.setInt(1, id);
 cs.setString(2, newName);
 cs.setObject(3, newHome);

These set methods are not suitable for the output parameters. Before executing
the call statement, caller() specifies the datatypes expected of the output
parameters using the JDBC registerOutParameter() method:

 cs.registerOutParameter(4, java.sql.Types.VARCHAR);
 cs.registerOutParameter(5, java.sql.Types.JAVA_OBJECT);

caller() then executes the call statement and obtains the output values using the
same getString() and getObject() methods that the selecter() method used:

 int res = cs.executeUpdate();
 String oldName = cs.getString(4);
 Address oldHome = (Address)cs.getObject(5);

Error handling in the native JDBC driver
Sybase supports and implements all methods from the java.sql.SQLException
and java.sql.SQLWarning classes. SQLException provides information on
database access errors. SQLWarning extends SQLException and provides
information on database access warnings.

Errors raised by Adaptive Server are numbered according to severity. Lower
numbers are less severe; higher numbers are more severe. Errors are grouped
according to severity:

• Warnings (EX_INFO: severity 10) – are converted to SQLWarnings.

• Exceptions (severity 11 to18) – are converted to SQLExceptions.

• Fatal errors (severity 19 to 24) – are converted to fatal SQLExceptions.

CHAPTER 4 Data Access Using JDBC

Java in Adaptive Server Enterprise 67

SQLExceptions can be raised through JDBC, Adaptive Server, or the native
JDBC driver. Raising a SqlException aborts the JDBC query that caused the
error. Subsequent system behavior differs depending on where the error is
caught:

• If the error is caught in Java – a “try” block and subsequent “catch” block
process the error.

Adaptive Server provides several extended JDBC driver-specific
SQLException error messages. All are EX_USER (severity 16) and can
always be caught. There are no driver-specific SQLWarning messages.

• If the error is not caught in Java – the Java VM returns control to Adaptive
Server, Adaptive Server catches the error, and an unhandled SQLException
error is raised.

The raiserror command is used typically with stored procedures to raise an
error and to print a user-defined error message. When a stored procedure
that calls the raiserror command is executed via JDBC, the error is treated
as an internal error of severity EX_USER, and a nonfatal SQLException is
raised.

Note You cannot access extended error data using the raiserror command;
the with errordata clause is not implemented for SQLException.

If an error causes a transaction to abort, the outcome depends on the transaction
context in which the Java method is invoked:

• If the transaction contains multiple statements – the transaction aborts and
control returns to the server, which rolls back the entire transaction. The
JDBC driver ceases to process queries until control returns from the server.

• If the transaction contains a single statement – the transaction aborts, the
SQL statement it contains rolls back, and the JDBC driver continues to
process queries.

The following scenarios illustrate the different outcomes. Consider a Java
method jdbcTests.Errorexample() that contains these statements:

stmt.executeUpdate("delete from parts where partno = 0"); Q2
stmt.executeQuery("select 1/0"); Q3
stmt.executeUpdate("delete from parts where partno = 10"); Q4

A transaction containing multiple statements includes these SQL commands:

begin transaction
delete from parts where partno = 8 Q1
select JDBCTests.Errorexample()

The JDBCExamples class

68 Adaptive Server Enterprise

In this case, these actions result from an aborted transaction:

• A divide-by-zero exception is raised in Q3.

• Changes from Q1 and Q2 are rolled back.

• The entire transaction aborts.

A transaction containing a single statement includes these SQL commands:

set chained off
delete from parts where partno = 8 Q1
select JDBCTests.Errorexample()

In this case:

• A divide-by-zero exception is raised in Q3.

• Changes from Q1 and Q2 are not rolled back

• The exception is caught in “catch” and “try” blocks in
JDBCTests.Errorexample.

• The deletion specified in Q4 does not execute because it is handled in the
same “try” and “catch” blocks as Q3.

• JDBC queries outside of the current “try” and “catch” blocks can be
executed.

The JDBCExamples class
// An example class illustrating the use of JDBC facilities
// with the Java in Adaptive Server feature.
//
// The methods of this class perform a range of SQL operations.
// These methods can be invoked either from a Java client,
// using the main method, or from the SQL server, using
// the serverMain method.
//
import java.sql.*; // JDBC
public class JDBCExamples {
{

CHAPTER 4 Data Access Using JDBC

Java in Adaptive Server Enterprise 69

The main() method
// The main method, to be called from a client-side command line
//
 public static void main(String args[]) {
 if (args.length!=2) {
 System.out.println("\n Usage: "
 + "java ExternalConnect server-name:port-number
 action ");
 System.out.println(" The action is connect, createtable,
 " + "createproc, drop, "
 + "insert, select, update, or call \n");
 return;
 }
 try{
 String server = args[0];
 String action = args[1].toLowerCase();
 Connection con = connecter(server);
 String workString = doAction(action, con, client);
 System.out.println("\n" + workString + "\n");
 } catch (Exception e) {
 System.out.println("\n Exception: ");
 e.printStackTrace();
 }
 }

The serverMain() method
// A JDBCExamples method equivalent to 'main',
// to be called from SQL or Java in the server

 public static String serverMain(String action) {
 try {
 Connection con = connecter("default");
 String workString = doAction(action, con, server);
 return workString;
 } catch (Exception e) {
 if (e.getMessage().equals(null)) {
 return "Exc: " + e.toString();
 } else {
 return "Exc - " + e.getMessage();
 }
 }
 }

The JDBCExamples class

70 Adaptive Server Enterprise

The connecter() method
// A JDBCExamples method to get a connection.
// It can be called from the server with argument 'default',
// or from a client, with an argument that is the server name.

public static Connection connecter(String server)
 throws Exception, SQLException, ClassNotFoundException {

 String forName="";
 String url="";

 if (server=="default") { // server connection to current server
 forName = "sybase.asejdbc.ASEDriver";
 url = "jdbc:default:connection";
 } else if (server!="default") { //client connection to server
 forName= "com.sybase.jdbc.SybDriver";
 url = "jdbc:sybase:Tds:"+ server;
 }

 String user = "sa";
 String password = "";

 // Load the driver
 Class.forName(forName);
 // Get a connection
 Connection con = DriverManager.getConnection(url,
 user, password);
 return con;
 }

The doAction() method
// A JDBCExamples method to route to the 'action' to be performed

 public static String doAction(String action, Connection con,
 String locale)
 throws Exception {

 String createProcScript =
 " create proc inoutproc @id int, @newname varchar(50),
 @newhome Address, "
 + " @oldname varchar(50) output, @oldhome Address
 output as "
 + " select @oldname = name, @oldhome = home from xmp

CHAPTER 4 Data Access Using JDBC

Java in Adaptive Server Enterprise 71

 where id=@id "
 + " update xmp set name=@newname, home = @newhome
 where id=@id ";
 String createTableScript =
 " create table xmp (id int, name varchar(50),
 home Address)" ;

 String dropTableScript = "drop table xmp ";
 String dropProcScript = "drop proc inoutproc ";

 String insertScript = "insert into xmp "
 + "values (1, 'Joe Smith', new Address('987 Shore',
 '12345'))";

 String workString = "Action (" + action +) ;
 if (action.equals("connect")) {
 workString += "performed";
 } else if (action.equals("createtable")) {
 workString += doSQL(con, createTableScript);
 } else if (action.equals("createproc")) {
 if (locale.equals(server)) {
 throw new exception (CreateProc cannot be performed
 in the server);
 } else {
 workString += doSQL(con, createProcScript);
 }
 } else if (action.equals("droptable")) {
 workString += doSQL(con, dropTableScript);
 } else if (action.equals("dropproc")) {
 if (locale.equals(server)) {
 throw new exception (CreateProc cannot be performed
 in the server);
 } else {
 workString += doSQL(con, dropProcScript);
 }
 } else if (action.equals("insert")) {
 workString += doSQL(con, insertScript);
 } else if (action.equals("update")) {
 workString += updater(con);
 } else if (action.equals("select")) {
 workString += selecter(con);
 } else if (action.equals("call")) {
 workString += caller(con);
 } else { return "Invalid action: " + action ;
 }
 return workString;
 }

The JDBCExamples class

72 Adaptive Server Enterprise

The doSQL() method
// A JDBCExamples method to execute an SQL statement.

 public static String doSQL (Connection con, String action)
 throws Exception {

 Statement stmt = con.createStatement();
 int res = stmt.executeUpdate(action);
 return "performed";
 }

The updater() method
// A method that updates a certain row of the 'xmp' table.
// This method illustrates prepared statements and parameter markers.

 public static String updater(Connection con)
 throws Exception {

 String sql = "update xmp set name = ?, home = ? where id = ?";
 int id=1;
 Address home = new Address("123 Main", "98765");
 String name = "Sam Brown";
 PreparedStatement pstmt = con.prepareStatement(sql);
 pstmt.setString(1, name);
 pstmt.setObject(2, home);
 pstmt.setInt(3, id);
 int res = pstmt.executeUpdate();
 return "performed";
 }

The selecter() method
// A JDBCExamples method to retrieve a certain row
// of the 'xmp' table.
// This method illustrates prepared statements, parameter markers,
// and result sets.

 public static String selecter(Connection con)
 throws Exception {

 String sql = "select name, home from xmp where id=?";

CHAPTER 4 Data Access Using JDBC

Java in Adaptive Server Enterprise 73

 int id=1;
 Address home = null;
 String name = "";
 String street = "";
 String zip = "";
 PreparedStatement pstmt = con.prepareStatement(sql);
 pstmt.setInt(1, id);
 ResultSet rs = pstmt.executeQuery();
 if (rs.next()) {
 name = rs.getString(1);
 home = (Address)rs.getObject(2);
 if (rs.next()) {
 throw new Exception("Error: Select returned
 multiple rows");
 } else { // No action
 }
 } else { throw new Exception("Error: Select returned no rows");
 }
 return "- Row with id=1: name("+ name +)
 + " street(" + home.street +) zip("+ home.zip +);

The caller() method
// A JDBCExamples method to call a stored procedure,
// passing input and output parameters of datatype String
 // and Address.
 // This method illustrates callable statements, parameter markers,
 // and result sets.

 public static String caller(Connection con)
 throws Exception {
 CallableStatement cs = con.prepareCall("{call inoutproc
 (?, ?, ?, ?, ?)}");
 int id = 1;
 String newName = "Frank Farr";
 Address newHome = new Address("123 Farr Lane", "87654");
 cs.setInt(1, id);
 cs.setString(2, newName);
 cs.setObject(3, newHome);
 cs.registerOutParameter(4, java.sql.Types.VARCHAR);
 cs.registerOutParameter(5, java.sql.Types.JAVA_OBJECT);
 int res = cs.executeUpdate();
 String oldName = cs.getString(4);
 Address oldHome = (Address)cs.getObject(5);
 return "- Old values of row with id=1: name("+oldName+)

The JDBCExamples class

74 Adaptive Server Enterprise

 street(" + oldHome.street + ") zip("+ oldHome.zip +);
 }
}

Java in Adaptive Server Enterprise 75

C H A P T E R 5 SQLJ Functions and Stored
Procedures

This chapter describes how to wrap Java methods in SQL names and use
them as Adaptive Server functions and stored procedures.

Overview
You can enclose Java static methods in SQL wrappers and use them
exactly as you would Transact-SQL stored procedures or built-in
functions. This functionality:

• Allows Java methods to return output parameters and result sets to the
calling environment.

• Complies with Part 1 of the ANSI SQLJ standard specification.

• Allows you to take advantage of traditional SQL syntax, metadata,
and permission capabilities.

• Allows you to use existing Java methods as SQLJ procedures and
functions on the server, on the client, and on any SQLJ-compliant,
third-party database.

Name Page
Overview 75

Invoking Java methods in Adaptive Server 78

Using Sybase Central to manage SQLJ functions and procedures 80

SQLJ user-defined functions 81

SQLJ stored procedures 86

Viewing information about SQLJ functions and procedures 97

Advanced topics 97

SQLJ and Sybase implementation: a comparison 102

SQLJExamples class 105

Overview

76 Adaptive Server Enterprise

❖ Creating a SQLJ stored procedure or function

Perform these steps to create and execute a SQLJ stored procedure or function.

1 Create and compile the Java method. Install the method class in the
database using the installjava utility.

Refer to Chapter 2, “Preparing for and Maintaining Java in the Database,”
for information on creating, compiling, and installing Java methods in
Adaptive Server.

2 Using the SQLJ create procedure or create function statement, define a SQL
name for the method.

3 Execute the procedure or function. The examples in this chapter use JDBC
method calls or isql. You can also execute the method using Embedded
SQL or ODBC.

Compliance with SQLJ Part 1 specifications
Adaptive Server SQLJ stored procedures and functions comply with SQLJ Part
1 of the standard specifications for using Java with SQL. See “Standards” on
page 4 for a description of the SQLJ standards.

Adaptive Server supports most features described in the SQLJ Part 1
specification; however, there are some differences. Unsupported features are
listed in Table 5-3 on page 103; partially supported features are listed in
Table 5-4 on page 103. Sybase-defined features—those not defined by the
standard but left to the implementation—are listed in Table 5-5 on page 103.

In those instances where Sybase proprietary implementation differs from the
SQLJ specifications, Sybase supports the SQLJ standard. For example, non-
Java Sybase SQL stored procedures support two parameter modes: in and inout.
The SQLJ standard supports three parameter modes: in, out, and inout. The
Sybase syntax for creating SQLJ stored procedures supports all three
parameter modes.

General issues
This section describes general issues and constraints that apply to SQLJ
functions and stored procedures.

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 77

Security and permissions
Sybase provides different security models for SQLJ stored procedures and
SQLJ functions.

SQLJ functions and user-defined functions (UDFs) (see “Invoking Java
methods in SQL” on page 28) use the same security model. Permission to
execute any UDF or SQLJ function is granted implicitly to public. If the
function performs SQL queries via JDBC, permission to access the data is
checked against the invoker of the function. Thus, if user A invokes a function
that accesses table t1, user A must have select permission on t1 or the query fails.

SQLJ stored procedures use the same security model as Transact-SQL stored
procedures. The user must be granted explicit permission to execute a SQLJ or
Transact-SQL stored procedure. If a SQLJ procedure performs SQL queries
via JDBC, implicit permission grant support is applied. This security model
allows the owner of the stored procedure, if the owner owns all SQL objects
referenced by the procedure, to grant execute permission on the procedure to
another user. The user who has execute permission can execute all SQL queries
in the stored procedure, even if the user does not have permission to access
those objects.

For a more detailed description of security for stored procedures, see the
System Administration Guide.

SQLJ Examples
The examples used in this chapter assume a SQL table called sales_emps with
these columns:

• name – the employee’s name

• id – the employee’s identification number

• state – the state in which the employee is located

• sales – amount of the employee’s sales

• jobcode – the employee’s job code

The table definition is:

create table sales_emps
(name varchar(50), id char(5),
state char(20), sales decimal (6,2),
jobcode integer null)

Invoking Java methods in Adaptive Server

78 Adaptive Server Enterprise

The example class is SQLJExamples, and the methods are:

• region() – maps a U.S. state code to a region number. The method does not
use SQL.

• correctStates() – performs a SQL update command to correct the spelling
of state codes. Old and new spellings are specified by input parameters.

• bestTwoEmps() – determines the top two employees by their sales records
and returns those values as output parameters.

• SQLJExamplesorderedEmps() – creates a SQL result set consisting of
selected employee rows ordered by values in the sales column, and returns
the result set to the client.

• job() – returns a string value corresponding to an integer job code value.

See “SQLJExamples class” on page 105 for the text of each method.

Invoking Java methods in Adaptive Server
You can invoke Java methods in two different ways in Adaptive Server:

• Invoke Java methods directly in SQL. Directions for invoking methods in
this way are presented in Chapter 3, “Using Java Classes in SQL.”

• Invoke Java methods indirectly using SQLJ stored procedures and
functions that provide Transact-SQL aliases for the method name. This
chapter describes invoking Java methods in this way.

Whichever way you choose, you must first create your Java methods and install
them in the Adaptive Server database using the installjava utility. See Chapter
2, “Preparing for and Maintaining Java in the Database,” for more
information.

Invoking Java
methods directly with
their Java names

You can invoke Java methods in SQL by referencing them with their fully
qualified Java names. Reference instances for instance methods, and either
instances or classes for static methods.

You can use static methods as user-defined functions (UDFs) that return a
value to the calling environment. You can use a Java static method as a UDF in
stored procedures, triggers, where clauses, select statements, or anywhere that
you can use a built-in SQL function.

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 79

When you call a Java method using its name, you cannot use methods that
return output parameters or result sets to the calling environment. A method
can manipulate the data it receives from a JDBC connection, but the method
can only return the single return value declared in its definition to the calling
environment.

You cannot use cross-database invocations of UDF functions.

See Chapter 3, “Using Java Classes in SQL,” for information about using Java
methods in this way.

Invoking Java
methods indirectly
using SQLJ

You can invoke Java methods as SQLJ functions or stored procedures. By
wrapping the Java method in a SQL wrapper, you take advantage of these
capabilities:

• You can use SQLJ stored procedures to return result sets and output
parameters to the calling environment.

• You can take advantage of SQL metadata capabilities. For example, you
can view a list of all stored procedures or functions in the database.

• SQLJ provides a SQL name for a method, which allows you to protect the
method invocation with standard SQL permissions.

• Sybase SQLJ conforms to the recognized SQLJ Part 1 standard, which
allows you to use Sybase SQLJ procedures and functions in conforming
non-Sybase environments.

• You can invoke SQLJ functions and SQLJ stored procedures across
databases.

• Because Adaptive Server checks datatype mapping when the SQLJ
routine is created, you need not be concerned with datatype mapping when
executing the routines.

You must reference static methods in a SQLJ routine; you cannot reference
instance methods.

This chapter describes how you can use Java methods as SQLJ stored
procedures and functions.

Using Sybase Central to manage SQLJ functions and procedures

80 Adaptive Server Enterprise

Using Sybase Central to manage SQLJ functions and
procedures

You can manage SQLJ functions and procedures from the command line using
isql and from the Adaptive Server plug-in to Sybase Central. From the Adaptive
Server plug-in you can:

• Create a SQLJ function or procedure

• Execute a SQLJ function or procedure

• View and modify the properties of a SQLJ function or procedure

• Delete a SQLJ function or procedure

• View the dependencies of a SQLJ function or procedure

• Create permissions for a SQLJ procedure

The following procedures describes how to create and view the properties of a
SQLJ routine. You can view dependencies and create and view permissions
from the routine’s property sheet.

❖ Creating a SQLJ function/procedure

First, create and compile the Java method. Install the method class in the
database using installjava. Then follow these steps:

1 Start the Adaptive Server plug-in and connect to Adaptive Server.

2 Double-click on the database in which you want to create the routine.

3 Open the SQLJ Procedures/SQLJ Functions folder.

4 Double-click the Add new Java Stored Procedure/Function icon.

5 Use the Add new Java Stored Procedure/Function wizard to create the
SQLJ procedure or function.

When you have finished using the wizard, the Adaptive Server plug-in
displays the SQLJ routine you have created in an edit screen, where you
can modify the routine and execute it.

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 81

❖ To view the properties of a SQLJ function or procedure

1 Start the Adaptive Server plug-in and connect to Adaptive Server.

2 Double-click on the database in which the routine is stored.

3 Open the SQLJ Procedures/SQLJ Functions folder.

4 Highlight a function or procedure icon.

5 Select File | Properties.

SQLJ user-defined functions
The create function command specifies a SQLJ function name and signature for
a Java method. You can use SQLJ functions to read and modify SQL and to
return a value described by the referenced method.

The SQLJ syntax for create function is:

create function [owner].sql_function_name
([sql_parameter_name sql_datatype

[(length)| (precision[, scale])]
[, sql_parameter_name sql_datatype

[(length) | (precision[, scale])]]
...])

returns sql_datatype
[(length)| (precision[, scale])]

[modifies sql data]
[returns null on null input |

called on null input]
[deterministic | not deterministic]
[exportable]
language java
parameter style java
external name 'java_method_name

[([java_datatype[{, java_datatype }
...]])]'

When creating a SQLJ function:

• The SQL function signature is the SQL datatype sql_datatype of each
function parameter.

• To comply with the ANSI standard, do not include an @ sign before
parameter names.

SQLJ user-defined functions

82 Adaptive Server Enterprise

Sybase adds an @ sign internally to support parameter name binding. You
will see the @ sign when using sp_help to print out information about the
SQLJ stored procedure.

• When creating a SQLJ function, you must include the parentheses that
surround the sql_parameter_name and sql_datatype information—even if
you do not include that information.

For example:

create function sqlj_fc()
language java
parameter style java

external name 'SQLJExamples.method'

• The modifies sql data clause specifies that the method invokes SQL
operations and reads and modifies SQL data. This is the default value. You
do not need to include it except for syntactic compatibility with the SQLJ
Part 1 standard.

• es returns null on null input and called on null input specify how Adaptive
Server handles null arguments of a function call. returns null on null input
specifies that if the value of any argument is null at runtime, the return
value of the function is set to null and the function body is not invoked.
called on null input is the default. It specifies that the function is invoked
regardless of null argument values.

Function calls and null argument values are described in detail in
“Handling nulls in the function call” on page 85.

• You can include the deterministic or not deterministic keywords, but Adaptive
Server does not use them. They are included for syntactic compatibility
with the SQLJ Part 1 standard.

• Clauses exportable keyword specifies that the function is to run on a
remote server using Sybase OmniConnect™ capabilities. Both the
function and the method on which it is based must be installed on the
remote server.

• Clauses language java and parameter style java specify that the referenced
method is written in Java and that the parameters are Java parameters. You
must include these phrases when creating a SQLJ function.

• The external name clause specifies that the routine is not written in SQL
and identifies the Java method, class and, package name (if any).

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 83

• The Java method signature specifies the Java datatype java_datatype of
each method parameter. The Java method signature is optional. If it is not
specified, Adaptive Server infers the Java method signature from the SQL
function signature.

Sybase recommends that you include the method signature as this practice
handles all datatype translations. See “Mapping Java and SQL datatypes”
on page 97.

• You can define different SQL names for the same Java method using
create function and then use them in the same way.

Writing the Java
method

Before you can create a SQLJ function, you must write the Java method that it
references, compile the method class, and install it in the database.

In this example, SQLJExamples.region() maps a state code to a region number
and returns that number to the user.

public static int region(String s)
throws SQLException {

s = s.trim();
if (s.equals "MN") || s.equals("VT") ||

s.equals("NH")) return 1;
if (s.equals("FL") || s.equals("GA") ||

s.equals("AL")) return 2;
if (s.equals("CA") || s.equals("AZ") ||

s.equals("NV")) return 3;
else throw new SQLException

("Invalid state code", "X2001");

}

Creating the SQLJ
function

After writing and installing the method, you can create the SQLJ function. For
example:

create function region_of(state char(20))
returns integer

language java parameter style java
external name

'SQLJExamples.region(java.lang.String)'

The SQLJ create function statement specifies an input parameter (state
char(20))and an integer return value. The SQL function signature is char(20).
The Java method signature is java.lang.String.

Calling the function You can call a SQLJ function directly, as if it were a built-in function. For
example:

SQLJ user-defined functions

84 Adaptive Server Enterprise

select name, region_of(state) as region
from sales_emps

where region_of(state)=3

Note The search sequence for functions in Adaptive Server is:

1 Built-in functions

2 SQLJ functions

3 Java-SQL functions that are called directly

Handling null argument values
Java class datatypes and Java primitive datatypes handle null argument values
in different ways.

• Java object datatypes that are classes—such as java.lang.Integer,
java.lang.String, java.lang.byte[], and java.sql.Timestamp—can hold both
actual values and null reference values.

• Java primitive datatypes—such as boolean, byte, short, and int—have no
representation for a null value. They can hold only non-null values.

When a Java method is invoked that causes a SQL null value to be passed as
an argument to a Java parameter whose datatype is a Java class, it is passed as
a Java null reference value.When a SQL null value is passed as an argument to
a Java parameter of a Java primitive datatype, however, an exception is raised
because the Java primitive datatype has no representation for a null value.

Typically, you will write Java methods that specify Java parameter datatypes
that are classes. In this case, nulls are handled without raising an exception. If
you choose to write Java functions that use Java parameters that cannot handle
null values, you can either:

• Include the returns null on null input clause when you create the SQLJ
function, or

• Invoke the SQLJ function using a case or other conditional expression to
test for null values and call the SQLJ function only for the non-null values.

You can handle expected nulls when you create the SQLJ function or when you
call it. The following sections describe both scenarios, and reference this
method:

public static String job(int jc)

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 85

throws SQLException {
if (jc==1) return “Admin”;

 else if (jc==2) return “Sales”;
else if (jc==3) return “Clerk”;
else return “unknown jobcode”;
}

Handling nulls when creating the function

If null values are expected, you can include the returns null on null input clause
when you create the function. For example:

create function job_of(jc integer)
returns varchar(20)

returns null on null input
language java parameter style java
external name 'SQLJExamples.job(int)'

You can then call job_of in this way:

select name, job_of(jobcode)
from sales_emp

where job_of(jobcode) <> "Admin"

When the SQL system evaluates the call job_of(jobcode) for a row of
sales_emps in which the jobcode column is null, the value of the call is set to
null without actually calling the Java method SQLJExamples.job. For rows with
non-null values of the jobcode column, the call is performed normally.

Thus, when a SQLJ function created using the returns null on null input clause
encounters a null argument, the result of the function call is set to null and the
function is not invoked.

Note If you include the returns null on null input clause when creating a SQLJ
function, the returns null on null input clause applies to all function parameters,
including nullable parameters.

If you include the called on null input clause (the default), null arguments for
non-nullable parameters generates an exception.

Handling nulls in the function call

You can use a conditional function call to handle null values for non-nullable
parameters. The following example uses a case expression:

SQLJ stored procedures

86 Adaptive Server Enterprise

select name,
case when jobcode is not null

then job_of(jobcode)
else null end

from sales_emps where
case when jobcode is not null

then job_of(jobcode)
else null end <> "Admin"

In this example, we assume that the function job_of was created using the
default clause called on null input.

Deleting a SQLJ function name
You can delete the SQLJ function name for a Java method using the drop
function command. For example, enter:

drop function region_of

which deletes the region_of function name and its reference to the
SQLJExamples.region method. drop function does not affect the referenced Java
method or class.

See the Reference Manual for complete syntax and usage information.

SQLJ stored procedures
Using Java-SQL capabilities, you can install Java classes in the database and
then invoke those methods from a client or from within the SQL system. You
can also invoke Java static (class) methods in another way—as SQLJ stored
procedures.

SQLJ stored procedures:

• Can return result sets and/or output parameters to the client

• Behave exactly as Transact-SQL stored procedures when executed

• Can be called from the client using ODBC, isql, or JDBC

• Can be called within the server from other stored procedures or native
Adaptive Server JDBC

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 87

The end user need not know whether the procedure being called is a SQLJ
stored procedure or a Transact-SQL stored procedure. They are both invoked
in the same way.

The SQLJ syntax for create procedure is:

create procedure [owner.]sql_procedure_name
([[in | out | inout] sql_parameter_name

sql_datatype [(length) |
(precision[, scale])]

[, [in | out | inout] sql_parameter_name
sql_datatype [(length) |
(precision[, scale])]]

...])
[modifies sql data]
[dynamic result sets integer]
[deterministic | not deterministic]
language java
parameter style java
external name 'java_method_name

[([java_datatype[, java_datatype
...]])]'

Note To comply with the ANSI standard, the SQLJ create procedure command
syntax is different from syntax used to create Sybase Transact-SQL stored
procedures.

Refer to the Reference Manual for a detailed description of each keyword and
option in this command.

When creating SQLJ stored procedures:

• The SQL procedure signature is the SQL datatype sql_datatype of each
procedure parameter.

• When creating a SQLJ stored procedure, do not include an @ sign before
parameter names. This practise is compliant with the ANSI standard.

Sybase adds an @ sign internally to support parameter name binding. You
will see the @ sign when using sp_help to print out information about the
SQLJ stored procedure.

• When creating a SQLJ stored procedure, you must include the parentheses
that surround the sql_parameter_name and sql_datatype information—
even if you do not include that information.

For example:

SQLJ stored procedures

88 Adaptive Server Enterprise

create procedure sqlj_sproc ()
language java
parameter style java

external name "SQLJExamples.method1"

• You can include the keywords modifies sql data to indicate that the method
invokes SQL operations and reads and modifies SQL data. This is the
default value.

• You must include the dynamic result sets integer option when result sets
are to be returned to the calling environment. Use the integer variable to
specify the maximum number of result sets expected.

• You can include the keywords deterministic or not deterministic for
compatibility with the SQLJ standard. However, Adaptive Server does not
make use of this option.

• You must include the language java parameter and style java keywords,
which tell Adaptive Server that the external routine is written in Java and
the runtime conventions for arguments passed to the external routine are
Java conventions.

• The external name clause indicates that the external routine is written in
Java and identifies the Java method, class, and package name (if any).

• The Java method signature specifies the Java datatype java_datatype of
each method parameter. The Java method signature is optional. If one is
not specified, Adaptive Server infers one from the SQL procedure
signature.

Sybase recommends that you include the method signature as this practice
handles all datatype translations. See “Mapping Java and SQL datatypes”
on page 97 for more information.

• You can define different SQL names for the same Java method using
create procedure and then use them in the same way.

Modifying SQL data
You can use a SQLJ stored procedure to modify information in the database.
The method referenced by the SQLJ procedure must be either:

• A method of type void, or

• A method with an int return type (incorporation of the int return type is a
Sybase extension of the SQLJ standard).

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 89

Writing the Java
method

The method SQLJExamples.correctStates() performs a SQL update statement to
correct the spelling of state codes. Input parameters specify the old and new
spellings. correctStates() is a void method; no value is returned to the caller.

public static void correctStates(String oldSpelling,
String newSpelling) throws SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {

Class.forName("sybase.asejdbc.ASEDriver");
conn = DriverManager.getConnection

("jdbc:default:connection");
}
catch (Exception e) {

System.err.println(e.getMessage() +
“:error in connection”);

}
try {

pstmt = conn.prepareStatement
("UPDATE sales_emps SET state = ?
WHERE state = ?");

pstmt.set.String(1, newSpelling);
pstmt.set.String(2, oldSpelling);
pstmt.executeUpdate();

}
catch (SQLException e) {

System.err.println(“SQLException: "+
e.getErrorCode() + e.getMessage());

}
return;

}

Creating the stored
procedure

Before you can call a Java method with a SQL name, you must create the SQL
name for it using the SQLJ create procedure command. The modifies sql data
clause is optional.

create procedure correct_states(old char(20),
not_old char(20))

modifies sql data
language java parameter style java
external name

'SQLJExamples.correctStates
(java.lang.String, java.lang.String)'

The correct_states procedure has a SQL procedure signature of char(20),
char(20). The Java method signature is java.lang.String, java.lang.String.

SQLJ stored procedures

90 Adaptive Server Enterprise

Calling the stored
procedure

You can execute the SQLJ procedure exactly as you would a Transact-SQL
procedure. In this example, the procedure executes from isql:

execute correct_states 'GEO', 'GA'

Using input and output parameters
Java methods do not support output parameters. When you wrap a Java method
in SQL, however, you can take advantage of Sybase SQLJ capabilities that
allow input, output, and input/output parameters for SQLJ stored procedures.

When you create a SQLJ procedure, you identify the mode for each parameter
as in, out, or inout.

• For input parameters, use the in keyword to qualify the parameter. in is the
default; Adaptive Server assumes an input parameter if you do not enter a
parameter mode.

• For output parameters, use the out keyword.

• For parameters that can pass values both to and from the referenced Java
method, use the inout keyword.

Note You create Transact-SQL stored procedures using only the in and out
keywords. The out keyword corresponds to the SQLJ inout keyword. See the
create procedure reference pages in the Adaptive Server Reference Manual for
more information.

To create a SQLJ stored procedure that defines output parameters, you must:

• Define the output parameter(s) using either the out or inout option when
you create the SQLJ stored procedure.

• Declare those parameters as Java arrays in the Java method. SQLJ uses
arrays as containers for the method’s output parameter values.

For example, if you want an Integer parameter to return a value to the
caller, you must specify the parameter type as Integer[] (an array of Integer)
in the method.

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 91

The array object for an out or inout parameter is created implicitly by the
system. It has a single element. The input value (if any) is placed in the
first (and only) element of the array before the Java method is called.
When the Java method returns, the first element is removed and assigned
to the output variable. Typically, this element will be assigned a new value
by the called method.

The following examples illustrate the use of output parameters using a Java
method bestTwoEmps() and a stored procedure best2 that references that
method.

Writing the Java
method

The SQLJExamples.bestTwoEmps() method returns the name, ID, region, and
sales of the two employees with the highest sales performance records. The
first eight parameters are output parameters requiring a containing array. The
ninth parameter is an input parameter and does not require an array.

public static void bestTwoEmps(String[] n1,
String[] id1, int[] r1,
BigDecimal[] s1, String[] n2,
String[] id2, int[] r2, BigDecimal[] s2,
int regionParm) throws SQLException {

n1[0] = "****";
id1[0] = "";
r1[0] = 0;
s1[0] = new BigDecimal(0):
n2[0] = "****",
id2[0] = "";
r2[0] = 0;
s2[0] = new BigDecimal(0);

try {
Connection conn = DriverManager.getConnection

("jdbc:default:connection");
java.sql.PreparedStatement stmt =

conn.prepareStatement("SELECT name, id,"
+ "region_of(state) as region, sales FROM"
+ "sales_emps WHERE"
+ "region_of(state)>? AND"
+ "sales IS NOT NULL ORDER BY sales DESC");

stmt.setInteger(1, regionParm);
ResultSet r = stmt.executeQuery();

if(r.next()) {
n1[0] = r.getString("name");
id1[0] = r.getString("id");
r1[0] = r.getInt("region");

SQLJ stored procedures

92 Adaptive Server Enterprise

s1[0] = r.getBigDecimaL("sales");
}
else return;

if(r.next()) {
n2[0] = r.getString("name");
id2[0] = r.getString("id");
r2[0] = r.getInt("region");
s2[0] = r.getBigDecimal("sales");

}
else return;

}
catch (SQLException e) {

System.err.println("SQLException: "+
e.getErrorCode() + e.getMessage());

}
}

Creating the SQLJ
procedure

Create a SQL name for the bestTwoEmps method. The first eight parameters
are output parameters; the ninth is an input parameter.

create procedure best2
(out n1 varchar(50), out id1 varchar(5),
out s1 decimal(6,2), out r1 integer,
out n2 varchar(50), out id2 varchar(50),
out r2 integer, out s2 decimal(6,2),
in region integer)
language java
parameter style java
external name

'SQLJExamples.bestTwoEmps (java.lang.String,
java.lang.String, int, java.math.BigDecimal,
java.lang.String, java.lang.String, int,
java.math.BigDecimal, int)'

The SQL procedure signature for best2 is: varchar(20), varchar(5), decimal (6,2)
and so on. The Java method signature is String, String, int, BigDecimal and so on.

Calling the procedure After the method is installed in the database and the SQLJ procedure
referencing the method has been created, you can call the SQLJ procedure.

At runtime, the SQL system:

1 Creates the needed arrays for the out and inout parameters when the SQLJ
procedure is called.

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 93

2 Copies the contents of the parameter arrays into the out and inout target
variables when returning from the SQLJ procedure.

The following example calls the best2 procedure from isql. The value for the
region input parameter specifies the region number.

declare @n1 varchar(50), @id1 varchar(5),
@s1 decimal (6,2), @r1 integer, @n2 varchar(50),
@id2 varchar(50), @r2 integer, @s2 decimal(6,2),
@region integer

select @region = 3
execute best2 @n1 out, @id1 out, @s1 out, @r1 out,

@n2 out, @id2 out, @r2 out, @s2 out, @region

Note Adaptive Server calls SQLJ stored procedures exactly as it calls
Transact-SQL stored procedures. Thus, when using isql or any other non-Java
client, you must precede parameter names by the @ sign.

Returning result sets
A SQL result set is a sequence of SQL rows that is delivered to the calling
environment.

When a Transact-SQL stored procedure returns one or more results sets, those
result sets are implicit output from the procedure call. That is, they are not
declared as explicit parameters or return values.

Java methods can return Java result set objects, but they do so as explicitly
declared method values.

To return a SQL-style result set from a Java method, you must first wrap the
Java method in a SQLJ stored procedure. When you call the method as a SQLJ
stored procedure, the result sets, which are returned by the Java method as Java
result set objects, are transformed by the server to SQL result sets.

When writing the Java method to be invoked as a SQLJ procedure that returns
a SQL-style result set, you must specify an additional parameter to the method
for each result set that the method can return. Each such parameter is a single-
element array of the Java ResultSet class.

This section describes the basic process of writing a method, creating the SQLJ
stored procedure, and calling the method. See “Specifying Java method
signatures explicitly or implicitly” on page 99 for more information about
returning result sets.

SQLJ stored procedures

94 Adaptive Server Enterprise

Writing the Java
method

The following method, SQLJExamples.orderedEmps, invokes SQL, includes a
ResultSet parameter, and uses JDBC calls for securing a connection and opening
a statement.

public static void orderedEmps
(int regionParm, ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstmt = null;

try {
Class.forName

("sybase.asejdbc.ASEDriver");
Connection conn =

DriverManager.getConnection
("jdbc:default:connection");

}
catch (Exception e) {

System.err.println(e.getMessage()
+ ":error in connection");

}

try {
java.sql.PreparedStatement

stmt = conn.prepareStatement
("SELECT name, region_of(state)"
"as region, sales FROM sales_emps"
"WHERE region_of(state) > ? AND"
"sales IS NOT NULL"
"ORDER BY sales DESC");

stmt.setInt(1, regionParm);
rs[0] = stmt.executeQuery();
return;

}
catch (SQLException e)

System.err.println("SQLException:"
+ e.getErrorCode() + e.getMessage());

}
return;

}

orderedEmps returns a single result set. You can also write methods that return
multiple result sets. For each result set returned, you must:

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 95

• Include a separate ResultSet array parameter in the method signature.

• Create a Statement object for each result set.

• Assign each result set to the first element of its ResultSet array.

Adaptive Server always returns the current open ResultSet object for each
Statement object. When creating Java methods that return result sets:

• Create a Statement object for each result set that is to be returned to the
client.

• Do not explicitly close ResultSet and Statement objects. Adaptive Server
closes them automatically.

Note Adaptive Server ensures that ResultSet and Statement objects are not
closed by garbage collection unless and until the affected result sets have
been processed and returned to the client.

• If some rows of the result set are fetched by calls of the Java next() method,
only the remaining rows of the result set are returned to the client.

Creating the SQLJ
stored procedure

When you create a SQLJ stored procedure that returns result sets, you must
specify the maximum number of result sets that can be returned. In this
example, the ranked_emps procedure returns a single result set.

create procedure ranked_emps(region integer)
dynamic result sets 1
language java parameter style java
external name 'SQLJExamples.orderedEmps(int,

ResultSet[]'

If ranked_emps generates more result sets than are specified by create
procedure, a warning displays and the procedure returns only the number of
result sets specified. As written, the ranked_emps SQLJ stored procedures
matches only one Java method.

Note Some restrictions apply to method overloading when you infer a method
signature involving result sets. See “Mapping Java and SQL datatypes” on
page 97 for more information.

Calling the procedure After you have installed the method’s class in the database and created the
SQLJ stored procedure that references the method, you can call the procedure.
You can write the call using any mechanism that processes SQL result sets.

SQLJ stored procedures

96 Adaptive Server Enterprise

For example, to call the ranked_emps procedure using JDBC, enter the
following:

java.sql.CallableStatement stmt =
conn.prepareCall("{call ranked_emps(?)}");

stmt.setInt(1,3);
ResultSet rs = stmt.executeQuery();
while (rs.next()) {

String name = rs.getString(1);
int.region = rs.getInt(2);
BigDecimal sales = rs.get.BigDecimal(3);
System.out.print("Name = " + name);
System.out.print("Region = "+ region);
System.out.print("Sales = "+ sales);
System.out.printIn():

}

The ranked_emps procedure supplies only the parameter declared in the create
procedure statement. The SQL system supplies an empty array of ResultSet
parameters and calls the Java method, which assigns the output result set to the
array parameter. When the Java method completes, the SQL system returns the
result set in the output array element as a SQL result set.

Note You can return result sets from a temporary table only when using an
external JDBC driver such as jConnect. You cannot use the Adaptive Server
native JDBC driver for this task.

Deleting a SQLJ stored procedure name

You can delete the SQLJ stored procedure name for a Java method using the
drop procedure command. For example, enter:

drop procedure correct_states

which deletes the correct_states procedure name and its reference to the
SQLJExamples.correctStates method. drop procedure does not affect the Java
class and method referenced by the procedure.

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 97

Viewing information about SQLJ functions and
procedures

Several system stored procedures can provide information about SQLJ
routines:

• sp_depends lists database objects referenced by the SQLJ routine and
database objects that reference the SQLJ routine.

• sp_help lists each parameter name, type, length, precision, scale,
parameter order, parameter mode and return type of the SQLJ routine.

• sp_helpjava lists information about Java classes and JARs installed in the
database. The depends parameter lists dependencies of specified classes
that are named in the external name clause of the SQLJ create function or
SQLJ create procedure statement.

• sp_helprotect reports the permissions of SQLJ stored procedures and SQLJ
functions.

See the Adaptive Server Reference Manual for complete syntax and usage
information for these system procedures.

Advanced topics
The following topics present a detailed description of SQLJ topics for
advanced users.

Mapping Java and SQL datatypes
When you create a stored procedure or function that references a Java method,
the datatypes of input and output parameters or result sets must not conflict
when values are converted from the SQL environment to the Java environment
and back again. The rules for how this mapping takes place are consistent with
the JDBC standard implementation. They are shown below and in Table 5-1 on
page 98.

Each SQL parameter and its corresponding Java parameter must be mappable.
SQL and Java datatypes are mappable in these ways:

Advanced topics

98 Adaptive Server Enterprise

• A SQL datatype and a primitive Java datatype are simply mappable if so
specified in Table 5-1.

• A SQL datatype and a non-primitive Java datatype are object mappable if
so specified in Table 5-1.

• A SQL abstract datatype (ADT) and a non-primitive Java datatype are
ADT mappable if both are the same class or interface.

• A SQL datatype and a Java datatype are output mappable if the Java
datatype is an array and the SQL datatype is simply mappable, object
mappable, or ADT mappable to the Java datatype. For example, character
and String[] are output mappable.

• A Java datatype is result-set mappable if it is an array of the result set-
oriented class: java.sql.ResultSet.

In general, a Java method is mappable to SQL if each of its parameters is
mappable to SQL and its result set parameters are result-set mappable and the
return type is either mappable (functions) or void or int (procedures).

Support for int return types for SQLJ stored procedures is a Sybase extension
of the SQLJ Part 1 standard.

Table 5-1: Simply and object mappable SQL and Java datatypes

SQL datatype

Corresponding Java datatypes

Simply mappable Object mappable

char/unichar java.lang.String

nchar java.lang.String

varchar/univarchar java.lang.String

nvarchar java.lang.String

text java.lang.String

numeric java.math.BigDecimal

decimal java.math.BigDecimal

money java.math.BigDecimal

smallmoney java.math.BigDecimal

bit boolean Boolean

tinyint byte Integer

smallint short Integer

integer int Integer

bigint java.math.BigInteger

unsigned smallint int Integer

unsigned int long Integer

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 99

Specifying Java
method signatures
explicitly or implicitly

When you create a SQLJ function or stored procedure, you typically specify a
Java method signature. You can also allow Adaptive Server to infer the Java
method signature from the routine’s SQL signature according to standard
JDBC datatype correspondence rules described earlier in this section and in
Table 5-1.

Sybase recommends that you include the Java method signature as this practise
ensures that all datatype translations are handled as specified.

You can allow Adaptive Server to infer the method signature for datatypes that
are:

• Simply mappable

• ADT mappable

• Output mappable

• Result-set mappable

For example, if you want Adaptive Server to infer the method signature for
correct_states, the create procedure statement is:

create procedure correct_states(old char(20),
not_old char(20))

modifies sql data
language java parameter style java
external name ‘SQLJExamples.correctStates’

Adaptive Server infers a Java method signature of java.lang.String and
java.lang.String. If you explicitly add the Java method signature, the create
procedure statement looks like this:

unsigned bigint java.math.BigInteger

real float Float

float double Double

double precision double Double

binary byte[]

varbinary byte[]

datetime java.sql.Timestamp

smalldatetime java.sql.Timestamp

date java.sql.Date

time java.sql.Time

SQL datatype

Corresponding Java datatypes

Simply mappable Object mappable

Advanced topics

100 Adaptive Server Enterprise

create procedure correct_states(old char(20),
not_old char(20))

modifies sql data
language java parameter style java
external name ‘SQLJExamples.correctStates

(java.lang.String, java.lang.String)’

You must explicitly specify the Java method signature for datatypes that are
object mappable. Otherwise, Adaptive Server infers the primitive, simply
mappable datatype.

For example, the SQLJExamples.job method contains a parameter of type int.
(See “Handling null argument values” on page 84.) When creating a function
referencing that method, Adaptive Server infers a Java signature of int, and you
need not specify it.

However, suppose the parameter of SQLJExamples.job was Java Integer, which
is the object-mappable type. For example:

public class SQLJExamples {
public static String job(Integer jc)

throws SQLException ...

Then, you must specify the Java method signature when you create a function
that references it:

create function job_of(jc integer)
...
external name

'SQLJExamples.job(java.lang.Integer)'

Returning result sets
and method
overloading

When you create a SQLJ stored procedure that returns result sets, you specify
the maximum number of result sets that can be returned.

If you specify a Java method signature, Adaptive Server looks for the single
method that matches the method name and signature. For example:

create procedure ranked_emps(region integer)
dynamic result sets 1
language java parameter style java
external name 'SQLJExamples.orderedEmps

(int, java.sql.ResultSet[])'

In this case, Adaptive Server resolves parameter types using normal Java
overloading conventions.

Suppose, however, that you do not specify the Java method signature:

create procedure ranked_emps(region integer)
dynamic result sets 1

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 101

language java parameter style java
external name 'SQLJExamples.orderedEmps'

If two methods exist, one with a signature of int, RS[], the other with a signature
of int, RS[], RS[], Application Server cannot distinguish between the two
methods and the procedure fails. If you allow Adaptive Server to infer the Java
method signature when returning result sets, make sure that only one method
satisfies the inferred conditions.

Note The number of dynamic result sets specified only affects the maximum
number of results that can be returned. It does not affect method overloading.

Ensuring signature
validity

If an installed class has been modified, Adaptive Server checks to make sure
that the method signature is valid when you invoke a SQLJ procedure or
function that references that class. If the signature of a modified method is still
valid, the execution of the SQLJ routine succeeds.

Using the command main method
In a Java client, you typically begin Java applications by running the Java
Virtual Machine (VM) on the command main method of a class. The
JDBCExamples class, for example, contains a main method. It is the command
main method that executes when you execute the class from the command line
as in the following:

java JDBCExamples

Note You cannot reference a Java main method in a SQLJ create function
statement.

If you reference a Java main method in a SQLJ create procedure statement, the
command main method must have the Java method signature String[] as in:

public static void main(java.lang.String[]) {
...
}

If the Java method signature is specified in the create procedure statement, it
must be specified as (java.lang.String[]). If the Java method signature is
not specified, it is assumed to be (java.lang.String[]).

SQLJ and Sybase implementation: a comparison

102 Adaptive Server Enterprise

If the SQL procedure signature contains parameters, those parameters must be
char, unichar, varchar, or univarchar. At runtime, they are passed as a Java array
of java.lang.String.

Each argument you provide to the SQLJ procedure must be char, unichar,
varchar, univarchar, or a literal string because it is passed to the main method as
an element of the java.lang.String array. You cannot use the dynamic result sets
clause when creating a main procedure.

SQLJ and Sybase implementation: a comparison
This section describes differences between SQLJ Part 1 standard specifications
and the Sybase proprietary implementation for SQLJ stored procedures and
functions.

Table 5-2 describes Adaptive Server enhancements to the SQLJ
implementation.

Table 5-2: Sybase enhancements

Table 5-3 describes SQLJ standard features not included in the Sybase
implementation.

Category SQLJ standard Sybase implementation

create procedure command Supports only Java methods that do
not return values. The methods must
have void return type.

Supports Java methods that allow an
integer value return. The methods
referenced in create procedure can
have either void or integer return
types.

create procedure and create function
commands

Supports only SQL datatypes in
create procedure or create function
parameter list.

Supports SQL datatypes and
nonprimitive Java datatypes as
abstract data types (ADTs).

SQLJ function and SQLJ procedure
invocation

Does not support implicit SQL
conversion to SQLJ datatypes.

Supports implicit SQL conversion to
SQLJ datatypes.

SQLJ functions Does not allow SQLJ functions to
run on remote servers.

Allows SQLJ functions to run on
remote servers using Sybase
OmniConnect capabilities.

drop procedure and drop function
commands

Requires complete command name:
drop procedure or drop function.

Supports complete function name
and abridged names: drop proc and
drop func.

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 103

Table 5-3: SQLJ features not supported

Table 5-4 describes the SQLJ standard features supported in part by the Sybase
implementation.

Table 5-4: SQLJ features partially supported

Table 5-5 describes the SQLJ implementation-defined features in the Sybase
implementation.

Table 5-5: SQLJ features defined by the implementation

SQLJ category SQLJ standard Sybase implementation

create function command Allows users to specify the same
SQL name for multiple SQLJ
functions.

Requires unique names for all stored
procedure and functions.

utilities Supports sqlj.install_jar,
sqlj.replace_jar, sqlj.remove_jar, and
similar utilities to install, replace,
and remove JAR files.

Supports the installjava utility and
the remove java Transact-SQL
command to perform similar
functions.

SQLJ category SQLJ standard Sybase implementation

create procedure and create function
commands

Allows users to install different
classes with the same name in the
same database if they are in different
JAR files.

Requires unique class names in the
same database.

create procedure and create function
commands

Supports the key words no sql,
contains sql, reads sql data, and
modifies sql data to specify the SQL
operations the Java method can
perform.

Supports modifies sql data only.

create procedure command Supports java.sql.ResultSet and the
SQL/OLB iterator declaration.

Supports java.sql.ResultSet only.

drop procedure and drop function
commands

Supports the key word restrict, which
requires the user to drop all SQL
objects (tables, views, and routines)
that invoke the procedure or function
before dropping the procedure or
function.

Does not support the restrict key
word and functionality.

SQLJ category SQLJ standard Sybase implementation

create procedure and create function
commands

Supports the deterministic |
not deterministic keywords, which
specify whether or not the procedure
or function always returns the same
values for the out and inout
parameters and the function result.

Supports only the syntax for
deterministic | not deterministic, not
the functionality.

SQLJ and Sybase implementation: a comparison

104 Adaptive Server Enterprise

create procedure and create function
commands

The validation of the mapping
between the SQL signature and the
Java method signature can be
performed either when the create
command is executed or when the
procedure or function is invoked.
The implementation defines when
the validation is performed.

If the referenced class has been
changed, performs all validations
when the create command is
executed, which enables faster
execution.

create procedure and create function
commands

Can specify the create procedure or
create function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

Invoking SQLJ routines When a Java method executes a SQL
statement, any exception conditions
are raised in the Java method as a
Java exception of the
Exception.sqlException subclass.
The effect of the exception condition
is defined by the implementation.

Follows the rules for Adaptive
Server JDBC.

Invoking SQLJ routines The implementation defines whether
a Java method called using a SQL
name executes with the privileges of
the user who created the procedure
or function or those of the invoker of
the procedure or function.

SQLJ procedures and functions
inherit the security features of SQL
stored procedures and Java-SQL
functions, respectively.

drop procedure and drop function
commands

Can specify the drop procedure or
drop function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

SQLJ category SQLJ standard Sybase implementation

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 105

SQLJExamples class
This section displays the SQLJExamples class used to illustrate SQLJ stored
procedures and functions. They are also in
$SYBASE/$SYBASE_ASE/sample/JavaXML/JavaXml.zip. (UNIX) or
%SYBASE%\Ase-12_5\sample\JavaXML\JavaXml.zip (Windows NT).

import java.lang.*;
import java.sql.*;
import java.math.*;

static String _url = “jdbc:default:connection”;

public class SQLExamples {

public static int region(String s)
throws SQLException {

s = s.trim();
if (s.equals("MN") || s.equals("VT") ||

s.equals("NH")) return 1;
if (s.equals("FL") || s.equals("GA") ||

s.equals("AL")) return 2;
if (s.equals("CA") || s.equals("AZ") ||

s.equals("NV")) return 3;
else throw new SQLException

("Invalid state code", "X2001");

}
public static void correctStates

(String oldSpelling, String newSpelling)
throws SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {

Class.forName
("sybase.asejdbc.ASEDriver");

conn = DriverManager.getConnection(_url);
}
catch (Exception e) {

System.err.println(e.getMessage() +
":error in connection");

}
try {

pstmt = conn.prepareStatement
("UPDATE sales_emps SET state = ?
WHERE state = ?");

SQLJExamples class

106 Adaptive Server Enterprise

pstmt.setString(1, newSpelling);
pstmt.setString(2, oldSpelling);
pstmt.executeUpdate();

}
catch (SQLException e) {

System.err.println("SQLException: "+
e.getErrorCode() + e.getMessage());

}

}
public static String job(int jc)

throws SQLException {
if (jc==1) return "Admin";

 else if (jc==2) return "Sales";
else if (jc==3) return "Clerk";
else return "unknown jobcode";

}
public static String job(int jc)

throws SQLException {
if (jc==1) return "Admin";

 else if (jc==2) return "Sales";
else if (jc==3) return "Clerk";
else return "unknown jobcode";
}

public static void bestTwoEmps(String[] n1,
String[] id1, int[] r1,
BigDecimal[] s1, String[] n2,
String[] id2, int[] r2, BigDecimal[] s2,
int regionParm) throws SQLException {

n1[0] = "****";
id1[0] = "";
r1[0] = 0;
s1[0] = new BigDecimal(0):
n2[0] = "****";
id2[0] = "";
r2[0] = 0;
s2[0] = new BigDecimal(0);

try {
Connection conn = DriverManager.getConnection

("jdbc:default:connection");
java.sql.PreparedStatement stmt =

conn.prepareStatement("SELECT name, id,"
+ "region_of(state) as region, sales FROM"
+ "sales_emps WHERE"

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 107

+ "region_of(state)>? AND"
+ "sales IS NOT NULL ORDER BY sales DESC");

stmt.setInteger(1, regionParm);
ResultSet r = stmt.executeQuery();

if(r.next()) {
n1[0] = r.getString("name");
id1[0] = r.getString("id");
r1[0] = r.getInt("region");
s1[0] = r.getBigDecimal("sales");

}
else return;

if(r.next()) {
n2[0] = r.getString("name");
id2[0] = r.getString("id");
r2[0] = r.getInt("region");
s2[0] = r.getBigDecimal("sales");

}
else return;

}
catch (SQLException e) {

System.err.println("SQLException: "+
e.getErrorCode() + e.getMessage());

}
}

public static void orderedEmps
(int regionParm, ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstmt = null;

try {
Class.forName

("sybase.asejdbc.ASEDriver");
Connection conn =

DriverManager.getConnection
("jdbc:default:connection");

}
catch (Exception e) {

System.err.println(e.getMessage()
+ ":error in connection");

}

SQLJExamples class

108 Adaptive Server Enterprise

try {
java.sql.PreparedStatement

stmt = conn.prepareStatement
("SELECT name, region_of(state)"
"as region, sales FROM sales_emps"
"WHERE region_of(state) > ? AND"
"sales IS NOT NULL"
"ORDER BY sales DESC");

stmt.setInt(1, regionParm);
rs[0] = stmt.executeQuery();
return;

}
catch (SQLException e) {

System.err.println("SQLException:"
+ e.getErrorCode() + e.getMessage());

}
return;

} return;
}

}

Java in Adaptive Server Enterprise 109

C H A P T E R 6 Debugging Java in the Database

This chapter describes the Sybase Java debugger and how you can use it
when developing Java in Adaptive Server.

Introduction to debugging Java
You can use the Sybase Java debugger to test Java classes and fix
problems with them.

How the debugger works
The Sybase Java debugger is a Java application that runs on a client
machine. It connects to the database using the Sybase jConnect JDBC
driver.

The debugger debugs classes running in the database. You can step
through the source code for the files as long as you have the Java source
code on the disk of your client machine. (Remember, the compiled classes
are installed in the database, but the source code is not).

Requirements for using the Java debugger
To use the Java debugger, you need:

• A Java runtime environment such as the Sun Microsystems Java
Runtime Environment, or the full Sun Microsystems JDK on your
machine.

Name Page
Introduction to debugging Java 109

Using the debugger 110

A debugging tutorial 117

Using the debugger

110 Adaptive Server Enterprise

• The source code for your application on your client machine.

What you can do with the debugger
Using the Sybase Java debugger, you can:

• Trace execution – Step line by line through the code of a class running in
the database. You can also look up and down the stack of functions that
have been called.

• Set breakpoints – Run the code until you hit a breakpoint, and stop at that
point in the code.

• Set break conditions – Breakpoints include lines of code, but you can also
specify conditions when the code is to break. For example, you can stop at
a line the tenth time it is executed, or only if a variable has a particular
value. You can also stop whenever a particular exception is thrown in the
Java application.

• Browse classes – You can browse through the classes installed into the
database that the server is currently using.

• Inspect and set variables – You can inspect the values of variables alter
their value when the execution is stopped at a breakpoint.

• Inspect and break on expressions – You can inspect the value of a wide
variety of expressions.

Using the debugger
This section describes how to use the Java debugger. The next section provides
a simple tutorial.

Starting the debugger and connecting to the database
The debugger is the JAR file Debug.jar, installed in your Adaptive Server
installation directory in $SYBASE/$SYBASE_ASE/debugger. If it is not already
present, add this file as the first element to your CLASSPATH environment
variable.

CHAPTER 6 Debugging Java in the Database

Java in Adaptive Server Enterprise 111

Debug.jar contains many classes. To start the debugger you invoke the
sybase.vm.Debug class, which has a main() method.You can start the debugger
in three ways:

• Run the jdebug script located in $SYBASE/$SYBASE_ASE/debugger.

“A debugging tutorial” on page 117 provides a sample debugging session
using the jdebug script.

• From the command line, enter:

java sybase.vm.Debug

In the Connect window, enter a URL, user login name, and password to
connect to the database.

• From Sybase Central:

a Start Sybase Central and open the Utilities folder, under Adaptive
Server Enterprise.

b Double-click the Java debugger icon in the right panel.

c In the Connect window, enter a URL, user login name, and password
to connect to the database.

Compiling classes for debugging
Java compilers such as the Sun Microsystems javac compiler can compile Java
classes at different levels of optimization. You can opt to compile Java code so
that information used by debuggers is retained in the compiled class files.

If you compile your source code without using switches for debugging, you can
still step through code and use breakpoints. However, you cannot inspect the
values of local variables.

To compile classes for debugging using the javac compiler, use the -g option:

javac -g ClassName.java

Attaching to a Java VM
When you connect to a database from the debugger, the Connection window
shows all currently active Java VMs under the user login name. If there are
none, the debugger goes into wait mode. Wait mode works like this:

Using the debugger

112 Adaptive Server Enterprise

• Each time a new Java VM is started, it shows up in the list.

• You may choose either to debug the new Java VM or to wait for another
one to appear.

• Once you have passed on a Java VM, you lose your chance to debug that
Java VM. If you then decide to attach to the passed Java VM, you must
disconnect from the database and reconnect. At this time, the Java VM
appears as active, and you can attach to it.

The Source window
The Source window:

• Displays Java source code, with line numbers and breakpoint indicators
(an asterisk in the left column).

• Displays execution status in the status box at the bottom of the window.

• Provides access to other debugger windows from the menu.

The debugger windows

The debugger has the these windows:

• Breakpoints window – Displays the list of current breakpoints.

• Calls window – Displays the current call stack.

• Classes window – Displays a list of classes currently loaded in the Java
VM. In addition, this window displays a list of methods for the currently
selected class and a list of static variables for the currently selected class.
In this window you can set breakpoints on entry to a method or when a
static variable is written.

• Connection window – The Connection window is shown when the
debugger is started. You can display it again if you wish to disconnect from
the database.

• Exceptions window – You can set a particular exception on which to
break, or choose to break on all exceptions.

• Inspection window – Displays current static variables, and allows you to
modify them. You can also inspect the value of a Java expression, such as
the following:

• Local variables

CHAPTER 6 Debugging Java in the Database

Java in Adaptive Server Enterprise 113

• Static variables

• Expressions using the dot operator

• Expressions using subscripts []

• Expressions using parentheses, arithmetic, or logical operators.

For example, the following expressions could be used:

x[i].field
q + 1
i == 7
(i + 1)*3

• Locals window – Displays current local variables, and allows you to
modify them.

• Status window – Displays messages describing the execution state of the
Java VM.

Options
The complete set of options for stepping through source code are displayed on
the Run menu. They include the following:

Function Shortcut key Description

Run F5 Continue running until
the next breakpoint, until
the Stop item is selected,
or until execution
finishes.

Step Over F7 or Space Step to the next line in the
current method. If the
line steps into a different
method, step over the
method, not into it. Also,
step over any breakpoints
within methods that are
stepped over.

Step Into F8 or i Step to the next line of
code. If the line steps into
a different method, step
into the method.

Using the debugger

114 Adaptive Server Enterprise

Setting breakpoints
When you set a breakpoint in the debugger, the Java VM stops execution at that
breakpoint. Once execution is stopped, you can inspect and modify the values
of variables and other expressions to better understand the state of the program.
You can then trace through execution step by step to identify problems.

Setting breakpoints in the proper places is a key to efficiently pinpointing the
problem execution steps.

The Java debugger allows you to set breakpoints not only on a line of code, but
on many other conditions. This section describes how to set breakpoints using
different conditions.

Breaking on a line number

When you break on a particular line of code, execution stops whenever that line
of code is executed.

To set a breakpoint on a particular line:

• In the Source window, select the line and press F9.

• Alternatively, you can double-click a line.

When a breakpoint is set on a line number, the breakpoint is shown in the
Source window by an asterisk in the left column. If the Breakpoints window is
open, the method and line number is displayed in the list of breakpoints.

You can toggle the breakpoint on and off by repeatedly double-clicking or
pressing F9.

Step Out F11 Complete the current
method, and break at the
next line of the calling
method.

Stop Break execution.

Run to Selected F6 Run until the currently
selected line is executed
and then break.

Home F4 Select the line where the
execution is broken.

Function Shortcut key Description

CHAPTER 6 Debugging Java in the Database

Java in Adaptive Server Enterprise 115

Breaking on a static method

When you break on a method, the break point is set on the first line of code in
the method that contains an executable statement.

To set a breakpoint on a static method:

1 From the Source window, choose Break→ New. The Break At window is
displayed.

2 Enter the name of a method in which you wish execution to stop. For
example:

JDBCExamples.selecter

stops execution whenever the JDBCExamples.selecter() method is entered.

When a breakpoint is set on a method, the breakpoint is shown in the Source
window by an asterisk in the left column of the line where the breakpoint
actually occurs. If the Breakpoints window is open, the method is displayed in
the list of breakpoints.

Using counts with breakpoints

If you set a breakpoint on a line that is in a loop, or in a method that is
frequently invoked, you may find that the line is executed many times before
the condition you are really interested in takes place. The debugger allows you
to associate a count with a breakpoint, so that execution stops only when the
line is executed a set number of times.

To associate a count with a breakpoint:

1 From the Source window, select Break→Display. The Breakpoints
window is displayed.

2 In the Breakpoints window, click a breakpoint to select it.

3 Select Break→Count. A window is displayed with a field for entering a
number of iterations. Enter an integer value. The execution will stop when
the line has been executed the specified number of times.

Using conditions with breakpoints

The debugger allows you to associate a condition with a breakpoint, so that
execution stops only when the line is executed and the condition is met.

To associate a condition with a breakpoint:

Using the debugger

116 Adaptive Server Enterprise

1 From the Source window, select Break→Display. The Breakpoints
window is displayed.

2 In the Breakpoints window, click a breakpoint to select it.

3 Select Break→Condition. A window is displayed with a field for entering
an expression. The execution will stop when the condition is true.

The expressions used here are the same as those that can be used in the
Inspection window, and include the following:

• Local variables

• Static variables

• Expressions using the dot operator

• Expressions using subscripts []

• Expressions using parentheses, arithmetic, or logical operators.

Breaking when execution is not interrupted

With a single exception, breakpoints can only be set when program execution
is interrupted. If you clear all breakpoints, and run the program you are
debugging to completion, you can no longer set a breakpoint on a line or at the
start of a method. Also, if a program is running in a loop, execution is
continuing and is not interrupted.

To debug your program under either of these conditions, select Run→Stop
from the Source window. This stops execution at the next line of Java code that
is executed. You can then set breakpoints at other points in the code.

Disconnecting from the database
When the program has run to completion, or at anytime during debugging, you
can disconnect from the database from the Connect window. Then, exit the
Source window and reconnect to the database after the debug program
terminates.

CHAPTER 6 Debugging Java in the Database

Java in Adaptive Server Enterprise 117

A debugging tutorial
This section takes you through a simple debugging session.

Before you begin
The source code for the class used in this tutorial is located in the directory
contained in the zip file
$SYBASE/$SYBASE_ASE/sample/JavaXml/JavaXml.zip. See
/JavaXml/Java/Java-Sql-examples in the unzipped directory.

Before you run the debugger, compile the source code using the javac
command with the -g option.

See “Creating Java classes and JARs” on page 14 for complete instructions for
compiling and installing Java classes in the database.

Start the Java debugger and connect to the database
You can start the debugger and connect to the database using a script, command
line options, or Sybase Central. In this tutorial, we use jdebug to start the
debugger. You can use any database.

Follow these steps:

1 Start Adaptive Server.

2 If Java queries have not yet been executed on your server, run any Java
query to initialize the Java subsystem and start a Java VM.

3 Run the $SYBASE/$SYBASE_ASE/debugger/jdebug script. jdebug
prompts you for these parameters:

a Machine name of the Adaptive Server

b Port number for the database

c Your login name

d Your password

e An alternate path to Debug.jar if its location is not in your
CLASSPATH

Once the connection is established, the debugger window displays a list of
available Java VMs or “Waiting for a VM.”

A debugging tutorial

118 Adaptive Server Enterprise

Attach to a Java VM
To attach to a Java VM from your user session:

1 With the debugger running, connect to the sample database from isql as the
sa:

$SYBASE/bin/isql -Usa -P

Note You cannot start Java execution from the debugger. To start a Java
VM you must carry out a Java operation from another connection using the
same user name.

2 Execute Java code using the following statements:

select JDBCExamples.serverMain(‘createtable’)
select JDBCExamples.serverMain(‘insert’)
select JDBCExamples.serverMain(‘select’)

The Sybase Java VM starts in order to retrieve the Java objects from the
table. The debugger immediately stops execution of the Java code.

The debugger Connection window displays the Java VMs belonging to the
user in this format:

VM#: “login_name, spid:spid#”

3 In the debugger Connection window, click the Java VM you want and then
click Attach to VM. The debugger attaches to the Java VM and the Source
window appears. The Connection window disappears.

Next, enable the Source window to show the source code for the method.
The source code is available on disk.

Load source code into the debugger
The debugger looks for source code files. You need to make the
$SYBASE/$SYBASE_ASE/sample/JavaSql/manual-examples/ subdirectory
available to the debugger, so that the debugger can find source code for the
class currently executing in the database.

To add a source code location to the debugger:

1 From the Source window, select File→Source Path. The Source Path
window displays.

CHAPTER 6 Debugging Java in the Database

Java in Adaptive Server Enterprise 119

2 From the Source Path window, select Path→Add. Enter the following
location into the text box:

$SYBASE/$SYBASE_ASE/sample/JavaSql/
manual-examples/

The source code for the JDBCExamples class displays in the window, with
the first line of the Query method serverMain() highlighted. The Java
debugger has stopped execution of the code at this point.

You can now close the Source Path window.

Step through source code
You can step through source code in the Java debugger in several ways. In this
section we illustrate the different ways you can step through code using the
serverMain() method.

When execution pauses at a line until you provide further instructions, we say
that the execution breaks at the line. The line is a breakpoint. Stepping
through code is a matter of setting explicit or implicit breakpoints in the code,
and executing code to that breakpoint.

Following the previous section, the debugger should have stopped execution of
JDBCExamples.serverMain() at the first statement:

Examples

Here are some steps you can try:

1 Stepping into a function – press F7 to step to the next line in the current
method.

2 Press F8 to step into the function doAction() in line 99.

3 Run to a selected line. You are now in function doAction(). Click on line
155 and press F6 to run to that line and break:

String workString = “Action(“ + action + “)”;

4 Set a breakpoint and execute to it – select line 179 and press F9 to set a
breakpoint on that line when running isql select
JDBCExamples.serverMain('select'):

workString + = selecter(con);

Press F5 to execute to that line.

A debugging tutorial

120 Adaptive Server Enterprise

5 Experiment – try different methods of stepping through the code. End with
F5 to complete the execution.

When you have completed the execution, the Interactive Data window
displays:

Action(select) – Row with id = 1: name(Joe Smith)

Inspecting and modifying variables
You can inspect the values of both local variables (declared in a method) and
class static variables in the debugger.

Inspecting local variables

You can inspect the values of local variables in a method as you step through
the code, to better understand what is happening.

To inspect and change the value of a variable:

1 Set a breakpoint at the first line of the selecter() method from the
Breakpoint window. This line is:

String sql = "select name, home from xmp where
id=?";

2 In Interactive , enter the following statement again to execute the method:

select JDBCExamples.serverMain(‘select’)

The query executes only as far as the breakpoint.

3 Press F7 to step to the next line. The variable has now been declared and
initialized.

4 From the Source window, select Window→Locals. The Local window
appears.

The Locals window shows that there are several local variables. The sql
variable has a value of zero. All others are listed as not in scope, which
means they are not yet initialized.

You must add the variables to the list in the Inspect window.

5 In the Source window, press F7 repeatedly to step through the code. As
you do so, the values of the variables appear in the Locals window.

CHAPTER 6 Debugging Java in the Database

Java in Adaptive Server Enterprise 121

If a local variable is not a simple integer or other quantity, then as soon as
it is set a + sign appears next to it. This means the local variable has fields
that have values. You can expand a local variable by double-clicking the +
sign or setting the cursor on the line and pressing Enter.

6 Complete the execution of the query to finish this exercise.

Modifying local variables

You can also modify values of variables from the Locals window.

To modify a local variable:

1 In the debugger Source window, set a breakpoint at the following line in
the selecter() method of the serverMain
 class:

String sql = "select name, home from xmp where
id=?";

2 Step past this line in the execution.

3 Open the Locals window. Select the id variable, and select
Local→Modify. Alternatively, you can set the cursor on the line and press
Enter.

4 Enter a value of 2 in the text box, and click OK to confirm the new value.
The id variable is set to 2 in the Locals window.

5 From the Source window, press F5 to complete execution of the query. In
the Interactive Data window, an error message displays indicating that no
rows were found.

Inspecting static variables

You can also inspect the values of class-level variables (static variables).

To inspect a static variable:

1 From the debugger Source window, select Window→Classes. The Classes
window is displayed.

2 Select a class in the left box. The methods and static variables of the class
are displayed in the boxes on the right.

3 Select Static→Inspect. The Inspect window is displayed. It lists the
variables available for inspection.

A debugging tutorial

122 Adaptive Server Enterprise

Java in Adaptive Server Enterprise 123

C H A P T E R 7 Network Access Using java.net

Adaptive Server 12.5 supports java.net, a package that allows you to
create networking applications and access different kinds of external
servers.

Adaptive Server java.net is compliant with the Java 1.2 API.

Overview
Support for java.net in the Adaptive Server allows you to create client-side
Java networking applications within the server. You can create a network
Java client application in the Adaptive Server that connects to any server,
which in effect enables Adaptive Server to function as a client to external
servers. See “Example usage” on page 125.

You can use java.net for many purposes:

• Download documents from any URL address on the Internet.

• Send e-mail messages from inside the server.

• Connect to an external server to save a document and perform file
functions: saving a document, editing a document, and so forth.

• Access documents using XML.

Topic Page
Overview 123

java.net classes 124

Setting up java.net 124

Example usage 125

User notes 130

java.net classes

124 Adaptive Server Enterprise

java.net classes
Table 7-1 shows the java.net classes Sybase supports.

Table 7-1: Supported java.net classes

You can use any of the supported classes in java.net to write Adaptive Server
client applications.

Setting up java.net
The following steps enable java.net.

❖ enabling jave.net

1 Enable Java Virtual Machine (VM).

sp_configure "enable java", 1

2 Specify the number of sockets you want to open (the default is 0). The
number of sockets configuration parameter is dynamic; you need not
restart Adaptive Server if you change the configuration option. For
example, to open 10 sockets, enter

sp_configure "number of java sockets", 10

Class Supported Special circumstances

InetAddress Yes None

Socket Yes Does not support deprecated
constructor “Socket (string host, int
port, boolean stream)” when stream
= false

URL Yes No file URL

HttpURLConnection Yes None

URLConnection Yes No file URL

URLDecoder Yes None

URLEncoder Yes None

DatagramPacket No

DatagramSocket No

MulticastSocket No

ServerSocket No

CHAPTER 7 Network Access Using java.net

Java in Adaptive Server Enterprise 125

3 Adjust the amount of memory available for the Java VM. Since you may
be streaming large text documents in and out, you may need to increase the
amount of memory available to the Java VM. The parameters you may
need to adjust are:

• size of global fixed heap

• size of process object heap

• size of shared class heap

For more information on these parameters, see Chapter 5, “Configuration
Parameters,” in the Sybase System Administration Guide.

Example usage
This section provides examples for using both socket classes and the URL
class. You can:

• Access an external document with XQL, using the URL class

• Save text out of Adaptive Server

• Use the MailTo class URL to mail a document

Using socket classes
Socket classes allow you to do more sophisticated network transfers than you
can achieve using URL classes. The Socket class allows you to connect to
specified port on any specified network host, and use the InputStream and
OutputStream classes to read and write the data.

Saving text out of Adaptive Server

This example describes how to set up a client application in Adaptive Server.
Adaptive Server version12.5 and later does not support direct access to a file;
this example is a workaround for this limitation.

You can write your own external server, which performs file operations, and
connect to this new server from the Adaptive Server, using a socket created
from a Socket class.

Example usage

126 Adaptive Server Enterprise

In the basic roles of client and server, the client connects to the server and
streams the text, while the server receives the stream and streams it to a file.

This example shows how you can install a Java application in Adaptive Server,
using java.net. This application acts as a client to an external server.

❖ The client process:

1 Receives an InputStream.

2 Creates a socket using the Socket class to connect to the server.

3 Creates an OutputStream on the socket.

4 Reads the InputStream and writes it to the OutputStream:

import java.io.*;
import java.net.*;
public class TestStream2File {

public static void writeOut(InputStream fin)throws Exception
{

Socket socket = new Socket("localhost", 1718);
OutputStream fout =

newBufferedOutputStream(socket.getOutputStream());
byte[] buffer = new byte[10];
int bytes_read;
while ((bytes_read = fin.read(buffer)) != -1) {

 fout.write(buffer, 0, bytes_read);
 }

 fout.close();
}

}

Compile this program.

❖ The server process:

1 Creates a server socket, using the SocketServer class, to listen on a port.

2 Uses the server socket to obtain a socket connection.

3 Receives an InputStream.

CHAPTER 7 Network Access Using java.net

Java in Adaptive Server Enterprise 127

4 Reads the InputStream and writes it to a FileOutputStream.

Note In this example, the server does not use threads, and therefore it can
receive a connection from only one client at a time.

import java.io.*;
import java.net.*;
public class FileServer {

public static void main (string[] args) throws IOException{
 Socket client = accept (1718);
 try{
 InputStream in = client.getInputStream ();
 FileOutputStream fout = new
 FileOutputStream("chastity.txt");
 byte[] buffer = new byte [10];
 int bytes_read;
 while (bytes_read = in.read(buffer))!= -1){
 fout.write(buffer, 0, bytes_read);
 }
 fout.close();
 }

finally {
 client.close ();
 }
}
static Socket accept (int port) throwsIOException {

System.out.prinln ("Starting on port " + port);
ServerSocket server = new ServerSocket (port);
System.out.println ("Waiting");
Socket client = server.accept ();
System.out.println ("Accepted from " + client.getInetAddress ());
server.close ();
return client;
}

}

Compile this program.

To use this combination of client and server, you must install the client in
Adaptive Server and start the external server:

witness% java FileServer &
[2] 28980
witness% Starting on port 1718

Example usage

128 Adaptive Server Enterprise

Waiting

Invoke the client from within Adaptive Server.

use pubs2
go
select TestStream2File.writeOut(c1) from blurbs
where au_id = “486-29-1786”
go

Using the URL class
You can use the URL class to:

• Send an e-mail message.

• Download an HTTP document from a Web server. This document can be
a static file or can be dynamically constructed by the Web server.

• Access an external document with XQL

Use the mailto:URL class to mail a document

Mailing a document is a good example of using the URL class. Before you
start, your client must connect to a mail server, so that the machine referenced
by System Properties (in this case salsa.sybase.com) is running a mail server,
such as sendmail.

1 Create a URL object.

2 Set a URLConnection object.

3 Create an OutputStream object from the URL object.

4 Write the mail. For example:

import java.io.*;
import java.net.*;
public class MailTo {

public static void sendIt() throws Exception{
System.getProperty("mail.host", "salsa.sybase.com");
URL url = new URL(mailto:"name@sybase.com");

 URLConnection conn = url.openConnection();
 PrintStream out = new PrintStream(conn.getOutputStream(),
true);

out.print ("From: kennys@sybase.com"+"\r\n");
out.print ("Subject: Works Great!"+"\r\n");

CHAPTER 7 Network Access Using java.net

Java in Adaptive Server Enterprise 129

out.print ("Thanks for the example - it works great!"+"\r\n");
out.close();
System.out.printIn("Messsage Sent");

}
}

5 Install mailto:URL for sending e-mail from within the database:

select MailTo.sendIt()
Message Sent!

A connection to a server is required for these actions.

Obtaining an HTTP document

Another way to use the URL class is to download a document from an HTTP
URL. When you start the client connects to a Web server. In the client code,
you:

• Create a URL object.

• Create an InputStream object from the URL object.

• Use read on the InputStream object to read in the document.

The following code sample works by:

• Reading the entire document into Adaptive Server memory.

• Creating a new InputStream on the document in Adaptive Server memory.

import java.io.*;
import java.net.*;
public class URLprocess {

public static InputStream readURL()
throws Exception {
URL u = newURL(“http://www.xxxx.com”);

InputStream in = u.openStream();
//This is the same as creating URLConnection, then
//calling getInputStream(). In ASE you need to read
//the entire document into memory, then create an
//InputStream on the in-memory copy.

int n=0,off;
byte b[]=new byte[50000];
for(off=0;(off<b.length512)

&&((n=in.read(b,off,512)!=-1);off+=n){}
System.out.println(“Number of bytes read :” + off);

in.close();
ByteArrayInputStream test =

User notes

130 Adaptive Server Enterprise

new ByteArrayInputStream(b,0,off);
return (InputStream) test;

}
}

After you create the new InputStream class, you can install this class and use it
to read a text file into the database, inserting data into a table, as in the
following example.

create table t (cl text)
go

insert into t values (URLprocess.readURL())
go
Number of bytes read :40867

select datalength(cl) from t
go

 40867

User notes
Certain aspects of java.net require caution:

• Most objects associated with java.net are not serializable, which means
that you cannot insert them into tables.

• You might encounter the exception “Too many open files,” when you have
opened only a few. Check Number of Java Sockets configuration
parameter.

• Most of the I/O-related functions use buffered I/O, which means that you
might need to flush your data explicitly. The PrintWriter class is an
example of a class in which the data is not automatically flushed.

Java in Adaptive Server Enterprise 131

C H A P T E R 8 Reference Topics

This chapter presents information on several reference topics.

JDK requirement for Java classes in the server
Java classes that you install and use in the server must be compiled with
JDK 1.2.2. If you compile a class with a later JDK, you will be able to
install it in the server using the installjava utility, but you will receive a
java.lang.ClassFormatError exception when you attempt to use the class in
Adaptive Server.

Topic Page
JDK requirement for Java classes in the server 131

Assignments 132

Allowed conversions 133

Transferring Java-SQL objects to clients 134

Supported Java API packages, classes, and methods 134

Invoking SQL from Java 137

Transact-SQL commands from Java methods 138

Datatype mapping between Java and SQL 142

Java-SQL identifiers 144

Java-SQL class and package names 145

Java-SQL column declarations 146

Java-SQL variable declarations 147

Java-SQL column references 147

Java-SQL member references 148

Java-SQL method calls 149

Assignments

132 Adaptive Server Enterprise

Assignments
This section defines the rules for assignment between SQL data items whose
datatypes are Java-SQL classes.

Each assignment transfers a source instance to a target data item:

• For an insert statement specifying a table that has a Java-SQL column,
refer to the Java-SQL column as the target data item and the insert value
as the source instance.

• For an update statement that updates a Java-SQL column, refer to the Java-
SQL column as the target data item and the update value as the source
instance.

• For a select or fetch statement that assigns to a variable or parameter, refer
to the variable or parameter as the target data item and the retrieved value
as the source instance.

Note If the source is a variable or parameter, then it is a reference to an object
in the Java VM. If the source is a column reference, which contains a
serialization, then the rules for column references (see Java-SQL column
references on page 147) yield a reference to an object in the Java VM. Thus,
the source is a reference to an object in the Java VM.

Assignment rules at compile-time
1 Define SC and TC as compile-time class names of the source and target.

Define SC_T and TC_T as classes named SC and DT in the database
associated with the target. Similarly, define SC_S and TC_S as classes
named SC and DT in the database associated with the source.

2 SC_T must be the same as TC_T or a subclass of TC_T.

Assignment rules at runtime
Assume that DT_SC is the same as DT_TC or its subclass.

CHAPTER 8 Reference Topics

Java in Adaptive Server Enterprise 133

• Define RSC as the runtime class name of the source value. Define RSC_S
as the class named RSC in the database associated with the source. Define
RSC_T as the name of a class RSC_T installed in the database associated
with the target. If there is no class RSC_T, then an exception is raised. If
RSC_T is neither the same as TC_T nor a subclass of TC_T, then an
exception is raised.

• If the databases associated with the source and target are not the same
database, then the source object is serialized by its current class, RSC_S,
and that serialization is deserialized by the class RSC_T that it will be
associated with in the database associated with the target.

• If the target is a SQL variable or parameter, then the source is copied by
reference to the target.

• If the target is a Java-SQL column, then the source is serialized, and that
serialization is deep copied to the target.

Allowed conversions
You can use convert to change the expression datatype in these ways:

• Convert Java types where the Java datatype is a Java object type to the
SQL datatype shown in “Datatype mapping between Java and SQL” on
page 142. The action of the convert function is the mapping implied by the
Java-SQL mapping.

• Convert SQL datatypes to Java types shown in “Datatype mapping
between Java and SQL” on page 142. The action of the convert function
is the mapping implied by the SQL-Java mapping.

• Convert any Java-SQL class installed in the SQL system to any other Java-
SQL class installed in the SQL system if the compile-time datatype of the
expression (source class) is a subclass or superclass of the target class.
Otherwise, an exception is raised.

The result of the conversion is associated with the current database.

See “Using the SQL convert function for Java subtypes,” for a discussion of
the use of the convert function for Java subtypes.

Transferring Java-SQL objects to clients

134 Adaptive Server Enterprise

Transferring Java-SQL objects to clients
When a value whose datatype is a Java-SQL object type is transferred from
Adaptive Server to a client, the data conversion of the object depends on the
client type:

• If the client is an isql client, the toString() or similar method of the object
is invoked and the result is truncated to varchar, which is transferred to the
client.

Note The number of bytes transferred to the client is dependent on the
value of the @@stringsize global variable. The default value is 50 bytes.
See “Representing Java instances” on page 30 for more information.

• If the client is a Java client that uses jConnect 4.0 or later, the server
transmits the object serialization to the client. This serialization is
seamlessly deserialized by jConnect to yield a copy of the object.

• If the client is a b client:

• If the object is a column declared as in row, the serialized value
contained in the column is transferred to the client as a varbinary value
of length determined by the size of the column.

• Otherwise, the serialized value of the object (the result of the
writeObject method of the object) is transferred to the client as an
image value.

Supported Java API packages, classes, and methods
Adaptive Server supports many but not all classes and methods in the Java API.
In addition, Adaptive Server may impose security restrictions and
implementation limitations. For example, Adaptive Server does not support all
of the thread creation and manipulation facilities of java.lang.Thread.

The supported packages are installed with Adaptive Server and are always
available. They cannot be installed by the user.

Note Java in Adaptive Server does not support the Java Native Interface (JNI).

This section lists:

CHAPTER 8 Reference Topics

Java in Adaptive Server Enterprise 135

• Supported Java packages and classes

• Unsupported Java packages

• Unsupported java.sql methods

Supported Java packages and classes
• java.io

• Externalizable

• DataInput

• DataOutput

• ObjectInputStream

• ObjectOutputStream

• Serializable

• java.lang – see “Unsupported java.sql methods and interfaces” on page
136 for a list of the unsupported classes in java.lang.

• java.math

• java.net – see Chapter 7, “Network Access Using java.net”

• java.sql – see “Unsupported java.sql methods and interfaces” on page 136
for a list of the unsupported methods and interfaces in java.sql.

• java.text

• java.util

• java.util.zip

Unsupported Java packages, classes, and methods
• java.applet

• java.awt

• java.awt.datatransfer

• java.awt.event

• java.awt.image

Supported Java API packages, classes, and methods

136 Adaptive Server Enterprise

• java.awt.peer

• java.beans

• java.lang.ref

• java.lang.Thread

• java.lang.ThreadGroup

• java.rmi

• java.rmi.dgc

• java.rmi.registry

• java.rmi.server

• java.security

• java.security.acl

• java.security.interfaces

Unsupported java.sql methods and interfaces
• Connection.commit()

• Connection.getMetaData()

• Connection.nativeSQL()

• Connection.rollback()

• Connection.setAutoCommit()

• Connection.setCatalog()

• Connection.setReadOnly()

• Connection.setTransactionIsolation()

• DatabaseMetaData.* – DatabaseMetaData is supported except for these
methods:

• deletesAreDetected()

• getUDTs()

• insertsAreDetected()

• updatesAreDetected()

CHAPTER 8 Reference Topics

Java in Adaptive Server Enterprise 137

• othersDeletesAreVisible()

• othersInsertsAreVisible()

• othersUpdatesAreVisible()

• ownDeletesAreVisible()

• ownInsertsAreVisible()

• ownUpdatesAreVisible()

• PreparedStatement.setAsciiStream()

• PreparedStatement.setUnicodeStream()

• PreparedStatement.setBinaryStream()

• ResultSetMetaData.getCatalogName()

• ResultSetMetaData.getSchemaName()

• ResultSetMetaData.getTableName()

• ResultSetMetaData.isCaseSensitive()

• ResultSetMetaData.isReadOnly()

• ResultSetMetaData.isSearchable()

• ResultSetMetaData.isWritable()

• Statement.getMaxFieldSize()

• Statement.setMaxFieldSize()

• Statement.setCursorName()

• Statement.setEscapeProcessing()

• Statement.getQueryTimeout()

• Statement.setQueryTimeoutt()

Invoking SQL from Java
Adaptive Server supplies a native JDBC driver, java.sql, that implements JDBC
1.1 and 1.2 specifications, and is compliant with version 2.0. java.sql enables
Java methods executing in Adaptive Server to perform SQL operations.

Transact-SQL commands from Java methods

138 Adaptive Server Enterprise

Special considerations
java.sql.DriverManager.getConnection() accepts these URLs:

• null

• “” (the null string)

• jdbc:default:connection

When invoking SQL from Java some restrictions apply:

• A SQL query that is performing update actions (update, insert, or delete)
cannot use the facilities of java.sql to invoke other SQL operations that
also perform update actions.

• Triggers that are fired by SQL using the facilities of java.sql cannot
generate result sets.

• java.sql cannot be used to execute extended stored procedures or remote
stored procedures.

Transact-SQL commands from Java methods
You can use certain Transact-SQL commands in Java methods called within
the SQL system. Table 8-1 lists Transact-SQL commands and whether or not
you can use them in Java methods. You can find further information on most
of these commands in the Sybase Adaptive Server Enterprise Reference
Manual.

Table 8-1: Support status of Transact-SQL commands

Command Status

alter database Not supported.

alter role Not supported.

alter table Supported.

begin ... end Supported.

begin transaction Not supported.

break Supported.

case Supported.

checkpoint Not supported.

commit Not supported.

compute Not supported.

CHAPTER 8 Reference Topics

Java in Adaptive Server Enterprise 139

connect - disconnect Not supported.

continue Supported.

create database Not supported.

create default Not supported.

create existing table Not supported.

create function Supported.

create index Not supported.

create procedure Not supported.

create role Not supported.

create rule Not supported.

create schema Not supported.

create table Supported.

create trigger Not supported.

create view Not supported.

cursors Not supported.
Only “server cursors” are
supported, that is, cursors
that are declared and used
within a stored procedure.

dbcc Not supported.

declare Supported.

disk init Not supported.

disk mirror Not supported.

disk refit Not supported.

disk reinit Not supported.

disk remirror Not supported.

disk unmirror Not supported.

drop database Not supported.

drop default Not supported.

drop function Supported.

drop index Not supported.

drop procedure Not supported.

drop role Not supported.

drop rule Not supported.

drop table Supported.

drop trigger Not supported.

drop view Not supported.

Command Status

Transact-SQL commands from Java methods

140 Adaptive Server Enterprise

dump database Not supported.

dump transaction Not supported.

execute Supported.

goto Supported.

grant Not supported.

group by and having clauses Supported.

if…else Supported.

insert table Supported.

kill Not supported.

load database Not supported.

load transaction Not supported.

online database Not supported.

order by Clause Supported.

prepare transaction Not supported.

print Not supported.

raiserror Supported.

readtext Not supported.

return Supported.

revoke Not supported.

rollback trigger Not supported.

rollback Not supported.

save transaction Not supported.

set See Table 12-2 for set
options.

setuser Not supported.

shutdown Not supported.

truncate table Supported.

union Operator Supported.

update statistics Not supported.

update Supported.

use Not supported.

waitfor Supported.

where Clause Supported.

while Supported.

writetext Not supported.

Command Status

CHAPTER 8 Reference Topics

Java in Adaptive Server Enterprise 141

Table 8-2 lists set command options and whether or not you can use them in
Java methods.

Table 8-2: Support status of set command options

set command option Status

ansinull Supported.

ansi_permissions Supported.

arithabort Supported.

arithignore Supported.

chained Not supported. See Note 1.

char_convert Not supported.

cis_rpc_handling Not supported

close on endtran Not supported

cursor rows Not supported

datefirst Supported

dateformat Supported

fipsflagger Not supported

flushmessage Not supported

forceplan Supported

identity_insert Supported

language Not supported

lock Supported

nocount Supported

noexec Not supported

offsets Not supported

or_strategy Supported

parallel_degree Supported. See Note 2.

parseonly Not supported

prefetch Supported

process_limit_action Supported. See Note 2.

procid Not supported

proxy Not supported

quoted_identifier Supported

replication Not supported

role Not supported

rowcount Supported

scan_parallel_degree Supported. See Note2.

self_recursion Supported

Datatype mapping between Java and SQL

142 Adaptive Server Enterprise

Datatype mapping between Java and SQL
Adaptive Server maps SQL datatypes to Java types (SQL-Java datatype
mapping) and Java scalar types to SQL datatypes (Java-SQL datatype
mapping). Table 8-3 shows SQL-Java datatype mapping.

session_authorization Not supported

showplan Supported

sort_resources Not supported

statistics io Not supported

statistics subquerycache Not supported

statistics time Not supported

string_rtruncation Supported

stringsize Supported

table count Supported

textsize Not supported

transaction iso level Not supported. See Note 1.

transactional_rpc Not supported

Note (1) set commands with options chained or
transaction isolation level are allowed only if the setting
that they specify is already in effect. That is, this kind of
set command is allowed if it has no affect. This is done to
support common coding practises in stored procedures.

Note (2) set commands pertaining to parallel degree are
allowed but have no affect. This supports the use of stored
procedures that set the parallel degree for other contexts.

set command option Status

CHAPTER 8 Reference Topics

Java in Adaptive Server Enterprise 143

Table 8-3: Mapping SQL datatypes to Java types

Note The mapping of unsigned bigint to double is an approximation; it will not
provide exact values. For exact values, convert the unsigned bigint value to a
string value when passing it to a Java method.

SQL type Java type

char String

varchar String

nchar String

nvarchar String

unichar String

univarchar String

unitext String

text String

numeric java.math.BigDecimal

decimal java.math.BigDecimal

money java.math.BigDecimal

smallmoney Java.math.BigDecimal

bit boolean

tinyint byte

smallint short

integer int

bigint java.math.BigInteger

unsigned smallint int

unsigned int long

unsigned bigint java.math.BigInteger

bigint java.math.BigInteger

real float

float double

double precision double

binary byte[]

varbinary byte[]

image java.io.InputStream

datetime java.sql.Timestamp

smalldatetime java.sql.Timestamp

date java.sql.Date

time java.sql.Time

Java-SQL identifiers

144 Adaptive Server Enterprise

Table 8-4 shows Java-SQL datatype mapping.

Table 8-4: Mapping Java scalar types to SQL datatypes

Java-SQL identifiers
Description Java-SQL identifiers are a subset of Java identifiers that can be referenced in

SQL.

Syntax java_sql_identifier ::= alphabetic character | underscore (_) symbol
[alphabetic character | arabic numeral | underscore(_) symbol |
dollar ($) symbol]

Usage • Java-SQL identifiers can be a maximum of 255 bytes in length if they are
surrounded by quotation marks. Otherwise, they must be 30 bytes or
fewer.

• The first character of the identifier must be either an alphabetic character
(uppercase or lowercase) or the underscore (_) symbol. Subsequent
characters can include alphabetic characters (uppercase or lowercase),
numbers, the dollar ($) symbol, or the underscore (_) symbol.

• Java-SQL identifiers are always case sensitive.

Java scalar type SQL type

boolean bit

byte tinyint

short smallint

int integer

long integer

float real

double double

CHAPTER 8 Reference Topics

Java in Adaptive Server Enterprise 145

Delimited Identifiers

• Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers for Java-SQL identifiers allows you to avoid certain
restrictions on the names of Java-SQL identifiers.

Note You can use double quotes with Java-SQL identifiers whether the
set quoted_identifier option is on or off.

• Delimited identifiers allow you to use SQL reserved words for packages,
classes, methods, and so on. Each time you use the delimited identifier in
a statement, you must enclose it in double quotes. For example:

create table t1
(c1 char(12)
c2 p1.”select”.p2.”jar”)

• Double quotes surround only individual Java-SQL identifiers, not the fully
qualified name.

See also For additional information about identifiers, see Chapter 5, “Transact-SQL
Topics,” in the Reference Manual.

Java-SQL class and package names
Description To reference a Java-SQL class or package, use the following syntax:

Syntax java_sql_class_name ::= [java_sql_package_name.]java_sql_identifier

java_sql_package_name ::=
[java_sql_package_name.]java_sql_identifier

Parameters java_sql_class_name
The fully qualified name of a Java-SQL class in the current database.

java_sql_package_name
The fully qualified name of a Java-SQL package in the current database.

java_sql_identifier
See Java-SQL identifiers.

Usage For Java-SQL class names:

• A class name reference always refers to a class in the current database.

Java-SQL column declarations

146 Adaptive Server Enterprise

• If you specify a Java-SQL class name without referencing the package
name, only one Java-SQL class of that name must exist in the current
database, and its package must be the default (anonymous) package.

• If a SQL user-defined datatype and a Java-SQL class possess the same
sequence of identifiers, Adaptive Server uses the SQL user-defined
datatype name and ignores the Java-SQL class name

For Java-SQL package names:

• If you specify a Java-SQL subpackage name, you must reference the
subpackage name with its package name:

java_sql_package_name.java_sql_subpackage_name

• Use Java-SQL package names only as qualifiers for class names or
subpackage names and to delete packages from the database using the
remove java command.

Java-SQL column declarations
Description To declare a Java-SQL column when you create or alter a table, use the

following syntax:

Syntax java_sql_column ::= column_name java_sql_class_name

Parameters java_sql_column
Specifies the syntax of Java-SQL column declarations.

column_name
The name of the Java-SQL column.

java_sql_class_name
The name of a Java-SQL class in the current database. This is the “declared
class” of the column.

Usage • The declared class must implement either the Serializable or Externalizable
interface.

• A Java-SQL column is always associated with the current database.

• A Java-SQL column cannot be specified as:

• not null

• unique

• A primary key

CHAPTER 8 Reference Topics

Java in Adaptive Server Enterprise 147

See also You use a Java-SQL column declaration only when you create or alter a table.
See the create table and alter table information in the Reference Manual.

Java-SQL variable declarations
Description Use Java-SQL variable declarations to declare variables and stored procedure

parameters for datatypes that are Java-SQL classes.

Syntax java_sql_variable ::= @variable_name java_sql_class_name

java_sql_parameter ::= @parameter_name java_sql_class_name

Parameters java_sql_variable
Specifies the syntax of a Java-SQL variable in a SQL stored procedure.

java_sql_parameter
Specifies the syntax of a Java-SQL parameter in a SQL stored procedure.

java_sql_class_name
The name of a Java-SQL class in the current database.

Usage A java_sql_variable or java_sql_parameter is always associated with the
database containing the stored procedure.

See also Refer to the Reference Manual for more information about variable
declarations.

Java-SQL column references
Description To reference a Java-SQL column, use the following syntax:

Syntax column_reference ::=
[[[database_name.]owner.]table_name.]column_name
| database_name..table_name.column_name

Parameters column_reference
A reference to a column whose datatype is a Java-SQL class.

Usage • If the value of the column is null, then the column reference is also null.

• If the value of the column is a Java serialization, S, and the name of its
class is CS, then:

Java-SQL member references

148 Adaptive Server Enterprise

• If the class CS does not exist in the current database or if CS is not the
name of a class in the database associated with the serialization, then
an exception is raised.

Note The database associated with the serialization is normally the
database that contains the column. Serializations contained in work
tables and in temporary tables created with “insert into #tempdb” are,
however, associated with the database in which the serialization was
stored originally.

• The value of the column reference is:

CSC.readObject(S)

where CSC is the column reference. If the expression raises an
uncaught Java exception, then an exception is raised.

The expression yields a reference to an object in the Java VM, which
is associated with the database associated with the serialization.

Java-SQL member references
Description References a field or method of a class or class instance.

Syntax member_reference ::= class_member_reference |
instance_member_reference

class_member_reference ::= java_sql_class_name.method_name

instance_member_reference ::= instance_expression>>member_name

instance_expression ::= column_reference | variable_name
| parameter_name | method_call | member_reference

member_name ::= field_name | method_name

Parameters member_reference
An expression that describes a field or method of a class or object.

class_member_reference
An expression that describes a static method of a Java-SQL class.

instance_member_reference
An expression that describes a static or dynamic method or field of a Java-
SQL class instance.

CHAPTER 8 Reference Topics

Java in Adaptive Server Enterprise 149

java_sql_class_name
A fully qualified name of a Java-SQL class in the current database.

instance_expression
An expression whose datatype is a Java-SQL class.

member_name
The name of a field or method of the class or class instance.

Usage • If a member references a field of a class instance, the instance has a null
value, and the Java-SQL member reference is the target of a fetch, select,
or update statement, then an exception is raised.

Otherwise, the Java-SQL member reference has the null value.

• The double angle (>>) and dot (.) qualification take precedence over any
operator, such as the addition (+) or equal to (=) operator, for example:

X>>A1>>B1 + X>>A1>>B2

In this expression, the addition operation is performed after the members
have been referenced.

• The field or method designated by a member reference is associated with
the same database as that of its Java-SQL class or instance of its Java-SQL
class.

If the Java type of a member reference is one of the Java scalar types (such
as boolean, byte, and so on), then the corresponding SQL datatype of the
reference is obtained by mapping the Java type to its equivalent SQL type.

If the Java type of a member reference is an object type, then the SQL
datatype is the same Java object type or class.

Java-SQL method calls
Description To invoke a Java-SQL method, which returns a single value, use the following

syntax:

Syntax method_call ::= member_reference ([parameters])
| new java_sql_class_name ([parameters])

parameters ::= parameter [(, parameter)...]

parameter ::= expression

Java-SQL method calls

150 Adaptive Server Enterprise

Parameters method_call
An invocation of a static method, instance method, or class constructor. A
method call can be used in an expression where a non-constant value of the
method’s datatype is required.

member_reference
A member reference that denotes a method.

parameters
The list of parameters to be passed to the method. If there are no parameters,
include empty parentheses.

Usage Method overloading

• When there are methods with the same name in the same class or instance,
the issue is resolved according to Java method overloading rules.

Datatype of method calls

• The datatype of a method call is determined as follows:

• If a method call specifies new, its datatype is that of its Java-SQL
class.

• If a method call specifies a member reference that denotes a type-
valued method, then the datatype of the method call is that type.

• If a method call specifies a member reference that denotes a void
static method, then the datatype of the method call is SQL integer.

• If a method call specifies a member reference that denotes a void
instance method of a class, then the datatype of the method call is that
of the class.

• To include a parameter in a member reference when the parameter is a
Java-SQL instance associated with another database, you must ensure that
the class name associated with the Java-SQL instance is included in both
databases. Otherwise, an exception is raised.

Runtime results

• The runtime result of a method call is as follows:

• If a method call specifies a member reference whose runtime value is
null (that is, a reference to a member of a null instance), then the result
is null.

• If a method call specifies a member reference that denotes a type-
valued method, then the result is the value returned by the method.

CHAPTER 8 Reference Topics

Java in Adaptive Server Enterprise 151

• If a method call specifies a member reference that denotes a void
static method, then the result is the null value.

• If a method call specifies a member reference that denotes a void
instance method of an instance of a class, then the result is a reference
to that instance.

• The method call and result of the method call are associated with the
same database.

• Adaptive Server does not pass the null value as the value of a
parameter to a method whose Java type is scalar.

Java-SQL method calls

152 Adaptive Server Enterprise

Java in Adaptive Server Enterprise 153

Glossary

This glossary describes Java and Java-SQL terms used in this book. For a
description of Adaptive Server and SQL terms, refer to the Adaptive
Server Glossary.

assignment A generic term for the data transfers specified by select, fetch, insert, and
update Transact-SQL commands. An assignment sets a source value into
a target data item.

associated JAR If a class/JAR is installed with installjava and the -jar option, then the JAR
is retained in the database and the class is linked in the database with the
associated JAR. See retained JAR.

bytecode The compiled form of Java source code that is executed by the Java VM.

class A class is the basic element of Java programs, containing a set of field
declarations and methods. A class is the master copy that determines the
behavior and attributes of each instance of that class. class definition is the
definition of an active data type, that specifies a legal set of values and
defines a set of methods that handle the values. See class instance.

class method See static method.

class file A file of type “class” (for example, myclass.class) that contains the
compiled bytecode for a Java class. See Java file and Java archive (JAR).

class instance Value of the class data type that contains a value for each field of the class
and that accepts all methods of the class.

datatype mapping Conversions between Java and SQL datatypes.

declared class The declared datatype of a Java-SQL data item. It is either the datatype of
the runtime value or a supertype of it.

externalization An externalization of a Java instance is a byte stream that contains
sufficient information for the class to reconstruct the instance.
Externalization is defined by the externalizable interface. All Java-SQL
classes must be either externalizable or serializable. See serialization.

 Glossary

154 Adaptive Server Enterprise

installed classes Java classes and methods that have been placed in the Adaptive Server system
by the installjava utility.

instance method A invoked method that references a specific instance of a class.

interface A named collection of method declarations. A class can implement an interface
if the class defines all methods declared in the interface.

Java archive (JAR) A platform-independent format for collecting classes in a single file.

Java Database
Connectivity (JDBC)

A Java-SQL API that is a standard part of the Java Class Libraries that control
Java application development. JDBC provides capabilities similar to those of
ODBC.

Java datatypes Java classes, either user-defined or from the JavaSoft API, or Java primitive
datatypes, such as boolean, byte, short, and int.

Java Development
Kit (JDK)

A toolset from Sun Microsystems that allows you to write and test Java
programs from the operating system.

Java file A file of type “java” (for example, myfile.java) that contains Java source code.
See class file and Java archive (JAR).

Java method
signature

The Java datatype of each parameter of a Java method.

Java object An instance of a Java class that is contained in the storage of the Java VM. Java
instances that are referenced in SQL are either values of Java columns or Java
objects.

Java-SQL column A SQL column whose datatype is a Java-SQL class.

Java-SQL class A public Java class that has been installed in the Adaptive Server system. It
consists of a set of variable definitions and methods.

A class instance consists of an instance of each of the fields of the class. Class
instances are strongly typed by the class name.

A subclass is a class that is declared to extend (at most) to one other class. That
other class is called the direct superclass of the subclass. A subclass has all of
the variables and methods of its direct and indirect superclasses, and may be
used interchangeably with them.

Java-SQL datatype
mapping

Conversions between Java and SQL datatypes. See “Datatype mapping
between Java and SQL” on page 142.

Java-SQL variable A SQL variable whose datatype is a Java-SQL class.

 Glossary

Java in Adaptive Server Enterprise 155

Java Virtual Machine
(Java VM)

The Java interpreter that processes Java in the server. It is invoked by the SQL
implementation.

mappable A Java datatype is mappable if it is either:

• Listed in the first column of Table 8-3 on page 143, or

• A public Java-SQL class that is installed in the Adaptive Server system.

A SQL datatype is mappable if it is either:

• Listed in the first column of Table 8-4 on page 144, or

• A public Java-SQL class that is built-in or installed in the Adaptive Server
system.

A Java method is mappable if all of its parameter and result datatypes are
mappable.

method A set of instructions, contained in a Java class, for performing a task. A method
can be declared static, in which case it is called a class method. Otherwise, it is
an instance method. Class methods can be referenced by qualifying the method
name with either the class name or the name of an instance of the class.
Instance methods are referenced by qualifying the method name with the name
of an instance of the class. The method body of an instance method can
reference the variables local to that instance.

narrowing
conversion

A Java operation for converting a reference to a class instance to a reference to
an instance of a subclass of that class. This operation is written in SQL with the
convert function. See also widening conversion.

package A package is a set of related classes. A class either specifies a package or is part
of an anonymous default package. A class can use Java import statements to
specify other packages whose classes can then be referenced.

procedure An SQL stored procedure, or a Java method with a void result type.

public Public fields and methods, as defined in Java.

retained JAR See associated JAR.

serialization A serialization of a Java instance is a byte stream containing sufficient
information to identify its class and reconstruct the instance. All Java-SQL
classes must be either externalizable or serializable. See externalization.

SQL function
signature

The SQL datatype of each parameter of a SQLJ function.

 Glossary

156 Adaptive Server Enterprise

SQL-Java datatype
mapping

Conversions between Java and SQL datatypes. See “Datatype mapping
between Java and SQL” on page 142.

SQL procedure
signature

The SQL datatype of each parameter of a SQLJ procedure.

static method A method invoked without referencing an object. Static methods affect the
whole class, not an instance of the class. Also called a class method.

subclass A class below another class in a hierarchy. It inherits attributes and behavior
from classes above it. A subclass may be used interchangeably with its
superclasses. The class above the subclass is its direct superclass. See
superclass, narrowing conversion, and widening conversion.

superclass A class above one or more classes in a hierarchy. It passes attributes and
behavior to the classes below it. It may not be used interchangeably with its
subclasses. See subclass, narrowing conversion, and widening conversion.

synonymous
classes

Java-SQL classes that have the same fully qualified name but are installed in
different databases.

Unicode A 16-bit character set defined by ISO 10646 that supports many languages.

variable In Java, a variable is local to a class, to instances of the class, or to a method.
A variable that is declared static is local to the class. Other variables declared
in the class are local to instances of the class. Those variables are called fields
of the class. A variable declared in a method is local to the method.

visible A Java class that has been installed in a SQL system is visible in SQL if it is
declared public; a field or method of a Java instance is visible in SQL if it is
both public and mappable. Visible classes, fields, and methods can be
referenced in SQL. Other classes, fields, and methods cannot, including classes
that are private, protected, or friendly, and fields and methods that are either
private, protected, or friendly, or are not mappable.

well-formed
document

In XML, the necessary characteristics of a well-formed document include: all
elements with both start and end tags, attribute values in quotes, all elements
properly nested.

widening conversion A Java operation for converting a reference to a class instance to a reference to
an instance of a superclass of that class. This operation is written in SQL with
the convert function. See also narrowing conversion.

Java in Adaptive Server Enterprise 157

Symbols
::= (BNF notation)

in SQL statements xvi
, (comma)

in SQL statements xvi
{} (curly braces)

in SQL statements xvi
() (parentheses)

in SQL statements xvi
[] (square brackets)

in SQL statements xvi
>> (double angle)

to qualify Java fields and methods 149
@ sign 81

A
Adaptive Server

plug-in 25, 80
additional information

about Java 9
ADT mappable datatypes 98
alter table

command 25
syntax 25

ANSI standards 4
assignment properties

Java-SQL data items 31
assignments 132
attaching to a Java VM 111

B
Backus Naur Form (BNF) notation xv, xvi
BNF notation in SQL statements xv, xvi
brackets. See square brackets []
breaking

on a class method 115
on a line number 114
using conditions 115
using counts 115
when execution is not interrupted 116

breakpoints 114

C
called on null input parameter 82
case expressions 35, 85
case sensitivity

in SQL xvii
character sets

Adaptive server plug-in 80
unicode 25, 34, 80

class names 145
class subtypes 34–36
classes. See Java classes
clients

bcp 134
isql 134

client-side JDBC 6
column

declarations 146
referencing 147

column datatypes, requirements 23
column declarations 146
column references 147
comma (,)

in SQL statements xvi
command main method 101
commands

create table 24, 25
drop function 86
SQLJ create function 81
SQLJ create procedure 87

commands, create procedure SQLJ 89
compile-time datatypes 36

Index

Index

158 Adaptive Server Enterprise

compiling Java code 14
configuration parameter, Number of Java Sockets 130
constructor method 26
constructors 26, 41
conventions

See also syntax
Java-SQL syntax xv
Transact-SQL syntax xv

conversions 133
narrowing 35
widening 35

convert function 34, 133
create procedure (SQLJ) command 87, 89
create table command, syntax 24, 25
creating

client applications 123
network applications, java.net 123
tables 24
user-defined classes 14

curly braces ({}) in SQL statements xvi

D
DatagramPacket, Java class 124
datatype conversions 133
datatype mapping 33, 97, 142–144
datatypes

compile-time 36
conversions 133
Java classes 3
method calls 150
runtime 36

Debug.jar, Java file 110
debugger

attaching to a Java VM 111
compiling classes for 111
disconnecting 116
how it works 109
location 110
options 113
requirements for using 109
starting 110
wait mode 111

debugger capabilities
browse classes 110

inspect and break on expressions 110
inspect and set variables 110
set break conditions 110
set breakpoints 110
trace execution 110

debugger windows
breakpoints 112
calls 112
classes 112
connection 112
exceptions 112
inspection 112
locals 113
source 112

debugging
Java 109–121

debugging tutorial 117–121
attaching to a Java VM 118
examples 119
inspecting local variables 120
inspecting static variables 121
inspecting variables 119
loading source code 118
modifying local variables 121
source code 117
starting the debugger 117
stepping through source code 119

deleting 26, 96
Java objects 26

delimited identifiers 145
deterministic parameter 82, 88
disabling Java 13
distinct keyword 44
double angle

qualifying Java fields and methods 149
to qualify Java fields and methods 27

downloading
installed classes 19
installed JARs 19

drop function command 86
dynamic result sets parameter 88

E
email

Index

Java in Adaptive Server Enterprise 159

java.net 123
messages, sending 123

enabling Java 13
enabling java.net, procedure 124
equality operations 44
examples

for SQLJ routines 77
exceptions 29
explicit Java method signatures 99
external name parameter 88
external server, writing with java.net 125
externalization 146
extractjava utility 19

F
flushing data explicitly 130

G
group by clause 44

H
HttpURLConnection, Java class 124

I
identifiers 144

delimited 145
implicit Java method signatures 99
in parameter 90
InetAddress, Java class 124
inout parameter 90
InputStream class 128
InputStream, Java class 130
inserting

data in a table 128
Java objects 26

installing
compressed JARS 15
Java classes 15, 18

uncompressed JARS 15
installjava utility 12, 15

-f option 16
-j option 16
-new option 17
syntax 16
update option 17

instance methods 42
inter-class arguments 50
invoking

Java method, using SQLJ 79
Java methods 28, 78
Java methods, invoking directly 78
Java methods, using SQLJ 78
SQL from Java 137, 142

J
JAR files

creating 15
installing 15
retaining 16

JARs
compressed, installing 15
uncompressed, installing 15

Java API 7
accessing from SQL 7
supported packages 134–137
Sybase support for 8

Java arrays 90
Java class datatypes 84
Java classes

as datatypes 3, 23
creating 14
DatagramPacket 124
DatagramSocket 124
HttpURLConnection
InetAddress
InputStream 125, 128
installing 15–18
MailTo 128
MulticastSocket 124
OutputStream 125, 128
PrintWriter 130
referencing other classes 18

Index

160 Adaptive Server Enterprise

retained 20
runtime 12
saving in JAR 15
ServerSocket 124, 126
Socket
SQLJ examples 78
subtypes 34
supported 8
updating 17
URL 128, 129
URL class, using 126
URLConnection 124
URLDecoder 124
URLEncoder 124
user-defined 8, 12

Java code
compiling 14
writing 14

Java compiler 111
Java datatypes

ADT mappable 98
object mappable 98
output mappable 98
result-set mappable 98
simply mappable 98

Java Development Kit 5
Java in the database

advantages of 1
capabilities 2
key features 5
preparing for 11–20
questions and answers 4

Java instances, representing 30
Java method signature 83, 88
Java methods

call by reference 29, 45
command main 101
exceptions 29
instance 42
invoking 28, 78
static 43
type 40, 41
void 41

Java objects 26
Java operations, invoked from SQL 6
Java primitive datatypes 84

Java runtime environment 11
Java VM 6, 11
Java VM parameters

size of global fixed heap 125
size of process object heap 125
size of shared class heap 125

Java, SQL, using together 6
java.net 124, 125, 126, 130

accessing documents using XML, JDBC 123
accessing external documents 125
cautions 130
classes
client application, setting up 125
client process 126
client process procedure 126
connecting through JDBC with jconnect 123
creating networking applications 123
downloading documents 123
enabling 124
examples 125
help 130
mailing documents 125
objects not serializable 130
procedure for enabling 124
reference documents 130
saving documents 123
saving text from Adaptive Server 125
sending email messages 123
server process 126
server process procedure 126
writing external server 125

java.net classes
HttpURLConnection 124
InetAddress 124
See Java classes
Socket 124
URL 124
URLConnection 124
URLDecoder 124
URLEncoder 124

java.net, for network access 123
java.sql 137
java.sql methods, unsupported 136
Java-SQL

class names 145
column declarations 146

Index

Java in Adaptive Server Enterprise 161

column references 147
columns 31, 45
creating tables 24
function results 31
identifiers 144
member references 148
method calls 149
names 23
package names 145
parameters 31, 46
static variables 46
transferring objects 134
transferring objects to clients 133
unsupported methods 136
variable declarations 147
variables 31, 46

Java-SQL classes
in multiple databases 46
installing 15–18

Java-SQL columns
storage options 24

jConnect
JDBC 6

jconnect 123
JDBC 57–74

accessing data 59
client-side 6, 58
concepts 58
connection defaults 59
connections 62
interface 8
JDBCExamples class 60
obtaining a connection 62
permissions 59
server-side 6, 58
terminology 58
version support 12

JDBC drivers 12, 137
client-side 6, 58
jConnect 6
server-side 6, 58

JDBC standard datatype mapping 97
JDBCExamples class 68–74

methods 61–66
overview 60

L
language java parameter 88

M
mailing a document 125
MailTo, Java class 128
mapping datatypes 142–144
mapping Java and SQL datatypes 97
member references 148
method calls 149

datatype of 150
method overloading 100, 150
methods

exceptions 29
runtime results 150
See also XQL methods
SQLJExamples.bestTwoEmps() 78
SQLJExamples.correctStates() 78, 89
SQLJExamples.job() 78
SQLJExamples.region() 78

modifies sql data parameter 82, 88
MulticastSocket, Java class 124
multiple databases 47

N
names in Java-SQL 23

case 23
length 23

narrowing conversions 35
network access, java.net 123
null values

case statements 85
in SQLJ functions 84

nulls in Java-SQL 36–40
arguments to methods 38
using convert functions 39

Number of Java Sockets, configuration parameter 130

O
object mappable datatypes 98

Index

162 Adaptive Server Enterprise

obtaining connections 62
options

external name 82
language java 82
parameter style java 82

order by clauses 44
ordering operations 44
out parameter 90
output mappable datatypes 98

P
package names 145
parameter style java parameter 88
parameters

(Java VM) size of global fixed heap 125
(Java VM) size of process object heap 125
(Java VM) size of shared class heap 125
deterministic 88
external name 88
inout 90
input 90
language java 88
modifies sql data 88
not deterministic 88
output 90
parameter style java 88

parentheses ()
in SQL statements xvi

permissions
Java 6, 22
JDBC 59
SQLJ routines 77

persistent data items 31
PrintWriter, Java class 130
procedure

creating SQLJ routine 76
enabling java.net 124

procedures
client process, java.net 126
server process, java.net 126

Q
questions and answers 4

R
rearranging installed classes 20
referencing

fields 27
remove java command 19, 146
removing classes 19
removing JARs 19
restrictions on Java in the database 9
result sets 100
ResultSet

mappable datatypes 98
returns null on null input parameter, Java clause 82
runtime

datatypes 36
Runtime environment 11
Runtime Java classes

location of 12
runtime Java classes 12

S
sample classes 51–53

address 51
address2Line 52
JDBCExamples 60–74
location of 10
misc 53

saving text out of Adaptive server 125
search order

function types 84
security

SQLJ routines 77
selecting Java objects 26
serialization 146, 148
server process 126
server-side JDBC 6
ServerSocket, Java class 124, 126
set commands

allowed in Java methods 141
updating 43

Index

Java in Adaptive Server Enterprise 163

setting up 124
shared class heap 124
simply mappable datatypes 98
Socket classes, using 125
Socket, Java class 124
sp_configure system procedure 13
sp_depends system procedure 97
sp_help system procedure 97
sp_helpjava

syntax 18
utilitysp_helpjava 18

sp_helpjava system procedure 97
sp_helprotect system procedure 97
SQL

expressions, include Java objects 6
function signature 81
procedure signature 87
wrappers 75, 79

SQLJ create procedure command 87
SQLJ functions 81–86

dropping 86
viewing information about 97

SQLJ implementation
features not supported 103
features partially supported 103
SQLJ and Sybase differences 102
Sybase defined 103

SQLJ standards 76
SQLJ stored procedures 86–88, 96

capabilities of 86
deleting 96
modifying SQL data 88
using input and output parameters 90
viewing information about 97

SQLJExamples class 105
SQLJExamples.bestTwoEmps() method 78
SQLJExamples.correctStates() method 78, 89
SQLJExamples.job() method 78
SQLJExamples.region() method 78, 83
square brackets []

in SQL statements xvi
standards for SQL 4
standards specifications 4
static methods 43, 78, 86
static variables 46
storage options

in row 24
String data

zero length 40
string data 40
style java keyword 88
subtypes 34
supertypes 34
Sybase Central

creating a SQLJ function or procedure from 80
managing SQLJ procedures and functions from 80
viewing SQLJ routine properties from 81

symbols
in SQL statements xv, xvi

syntax conventions
Java-SQL xv

syntax conventions, Transact-SQL xv
system procedures

helpjava 18
sp_depends 97
sp_help 97
sp_helpjava 97
sp_helprotect 97

T
table definition 77
temporary databases 50
transact-SQL

commands, in Java methods 138
transient data items 31

U
unicode 40
union operator 44
updating Java objects 26
URL

Java class 126
URL class

accessing external server with XQL 128
downloading HTTP document 128
inserting data in a table 128
Java class 124, 128, 129
obtaining an HTTP document 128

Index

164 Adaptive Server Enterprise

sending email 128
using 128

URLConnection, Java class 124
URLDecoder, Java class 124
URLEncoder, Java class 124
user-defined classes, creating 14
using

Java and SQL together 6
Java classes 21, 50
Socket classes 125
URL class 126

V
variable declarations 147
variables 147

datatypes of 24
static 46
values assigned to 27

viewing information
about installed classes 18
about installed JARs 18

void methods 88

W
where clause 35, 42, 45
work databases 50

X
XML

accessing documents with java.net 123

Z
zero-length strings 40

	Java in Adaptive Server® Enterprise
	About This Book
	CHAPTER 1 An Introduction to Java in the Database
	Advantages of Java in the database
	Capabilities of Java in the database
	Invoking Java methods in the database
	Invoking Java methods directly in SQL
	Invoking Java methods as SQLJ stored procedures and functions

	Storing Java classes as datatypes
	Storing and querying XML in the database

	Standards
	Java in the database: questions and answers
	What are the key features?
	How can I store Java instructions in the database?
	How is Java executed in the database?
	Client- and server-side JDBC

	How can I use Java and SQL together?
	What is the Java API?
	How can I access the Java API from SQL?
	Which Java classes are supported in the Java API?
	Can I install my own Java classes?
	Can I access data using Java?
	Can I use the same classes on client and server?
	How do I use Java classes in SQL?
	Where can I find information about Java in the database?
	What you cannot do with Java in the database

	Sample Java classes

	CHAPTER 2 Preparing for and Maintaining Java in the Database
	The Java runtime environment
	Java classes in the database
	Sybase runtime Java classes
	User-defined Java classes

	JDBC drivers
	The Java VM

	Configuring memory for Java in the database
	Enabling the server for Java
	Disabling the server for Java

	Creating Java classes and JARs
	Writing the Java code
	Compiling Java code
	Saving classes in a JAR file
	Installing uncompressed JARs
	Installing compressed JARs

	Installing Java classes in the database
	Using installjava
	Retaining the JAR file
	Updating installed classes

	Referencing other Java-SQL classes

	Viewing information about installed classes and JARs
	Downloading installed classes and JARs
	Removing classes and JARs
	Retaining classes

	CHAPTER 3 Using Java Classes in SQL
	General concepts
	Java considerations
	Java-SQL names

	Using Java classes as datatypes
	Creating and altering tables with Java-SQL columns
	Altering partitioned tables

	Selecting, inserting, updating, and deleting Java objects

	Invoking Java methods in SQL
	Sample methods
	Exceptions in Java-SQL methods

	Representing Java instances
	Assignment properties of Java-SQL data items
	Datatype mapping between Java and SQL fields
	Character sets for data and identifiers
	Subtypes in Java-SQL data
	Widening conversions
	Narrowing conversions
	Runtime versus compile-time datatypes

	The treatment of nulls in Java-SQL data
	References to fields and methods of null instances
	Null values as arguments to Java-SQL methods
	Null values when using the SQL convert function

	Java-SQL string data
	Zero-length strings

	Type and void methods
	Java void instance methods
	Java void static methods

	Equality and ordering operations
	Evaluation order and Java method calls
	Columns
	Variables and parameters

	Static variables in Java-SQL classes
	Java classes in multiple databases
	Scope
	Cross-database references
	Inter-class transfers
	Passing inter-class arguments
	Temporary and work databases

	Java classes

	CHAPTER 4 Data Access Using JDBC
	Overview
	JDBC concepts and terminology
	Differences between client- and server-side JDBC
	Permissions
	Using JDBC to access data
	Overview of the JDBCExamples class
	The main() and serverMain() methods
	Using main()
	Using serverMain()

	Obtaining a JDBC connection: the Connecter() method
	Routing the action to other methods: the doAction() method
	Executing imperative SQL operations: the doSQL() method
	Executing an update statement: the updater() method
	Executing a select statement: the selecter() method
	Calling a SQL stored procedure: the caller() method

	Error handling in the native JDBC driver
	The JDBCExamples class
	The main() method
	The serverMain() method
	The connecter() method
	The doAction() method
	The doSQL() method
	The updater() method
	The selecter() method
	The caller() method

	CHAPTER 5 SQLJ Functions and Stored Procedures
	Overview
	Compliance with SQLJ Part 1 specifications
	General issues
	Security and permissions
	SQLJ Examples

	Invoking Java methods in Adaptive Server
	Using Sybase Central to manage SQLJ functions and procedures
	SQLJ user-defined functions
	Handling null argument values
	Handling nulls when creating the function
	Handling nulls in the function call

	Deleting a SQLJ function name

	SQLJ stored procedures
	Modifying SQL data
	Using input and output parameters
	Returning result sets
	Deleting a SQLJ stored procedure name

	Viewing information about SQLJ functions and procedures
	Advanced topics
	Mapping Java and SQL datatypes
	Using the command main method

	SQLJ and Sybase implementation: a comparison
	SQLJExamples class

	CHAPTER 6 Debugging Java in the Database
	Introduction to debugging Java
	How the debugger works
	Requirements for using the Java debugger
	What you can do with the debugger

	Using the debugger
	Starting the debugger and connecting to the database
	Compiling classes for debugging
	Attaching to a Java VM
	The Source window
	The debugger windows

	Options
	Setting breakpoints
	Breaking on a line number
	Breaking on a static method
	Using counts with breakpoints
	Using conditions with breakpoints
	Breaking when execution is not interrupted

	Disconnecting from the database

	A debugging tutorial
	Before you begin
	Start the Java debugger and connect to the database
	Attach to a Java VM
	Load source code into the debugger
	Step through source code
	Examples

	Inspecting and modifying variables
	Inspecting local variables
	Modifying local variables
	Inspecting static variables

	CHAPTER 7 Network Access Using java.net
	Overview
	java.net classes
	Setting up java.net
	Example usage
	Using socket classes
	Saving text out of Adaptive Server

	Using the URL class
	Use the mailto:URL class to mail a document
	Obtaining an HTTP document

	User notes

	CHAPTER 8 Reference Topics
	JDK requirement for Java classes in the server
	Assignments
	Assignment rules at compile-time
	Assignment rules at runtime

	Allowed conversions
	Transferring Java-SQL objects to clients
	Supported Java API packages, classes, and methods
	Supported Java packages and classes
	Unsupported Java packages, classes, and methods
	Unsupported java.sql methods and interfaces

	Invoking SQL from Java
	Special considerations

	Transact-SQL commands from Java methods
	Datatype mapping between Java and SQL
	Java-SQL identifiers
	Java-SQL class and package names
	Java-SQL column declarations
	Java-SQL variable declarations
	Java-SQL column references
	Java-SQL member references
	Java-SQL method calls

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

